

OPEN ACCESS

Original Article

Interalar-to-Intercanine Distance Ratio in Sudanese Dentate Adults: Anthropometric Foundations for Anterior Teeth Selection in Edentulous Patients

Nasr Elsheikh 1,2*, Nadia Khalifa 3, Latifa Almendilawi 4

ABSTRACT

Background: For edentulous patients without pre-extraction records, selecting appropriate measurements for maxillary anterior teeth can be difficult.

Objective: To develop a reliable guideline for the Sudanese population, this study examines the relationship between interalar width (IAW) and intercanine distance (ICD).

Methods: A total of 114 Sudanese individuals with full natural dentition (45 men and 69 women) participated in a cross-sectional study. A digital caliper was used in a clinical setting to measure IAW, and dental casts were used to get ICD. Independent t-tests (p < 0.05) and Pearson correlation were used in the statistical analysis.

Results: The average IAW was 40.00 ± 3.8 mm (p < 0.001) for males (42.7 mm) and for females (38.3 mm). The average ICD was 35.93 ± 2.1 mm (p = 0.003), with males measuring 37.1 mm and females measuring 35.19 mm. Dividing the IAW by ICD gives a 1.1 ratio.

Conclusion: A robust association was found between IAW and ICD, endorsing the application of a 1.1 ratio as a dependable reference for choosing anterior teeth in edentulous Sudanese patients.

Keywords: Interalar width, intercanine distance, maxillary anterior teeth selection, Sudan.

* Corresponding author address: nasr99nasr@yahoo.com

¹ Department of Dentistry, Faculty of Medicine and Health Sciences, University of Science and Technology, Aden, Yemen

² Department of Prosthodontics, Faculty of Dentistry, The National Ribat University, Khartoum, Sudan

³ Department of Preventive and Restorative Dentistry, College of Dental Medicine, University of Sharjah, United Arab Emirates

⁴ Department of Restorative Dentistry, School of Dental Medicine, University at Buffalo, United States of America

INTRODUCTION

undergoing Edentulous patients prosthetic rehabilitation require careful consideration of both function and appearance, especially when choosing maxillary anterior teeth. Clinicians must rely on facial anthropometry since they often come across instances with no pre-extraction information [1,2]. We focus on interalar width (IAW) because of its anatomically constant link with the maxillary arch [3], even though other measures, including interpupillary distance and bizygomatic width, have been studied [4, 5]. Although extensive research has been conducted among Asian and Caucasian communities. less is known about African populations. This gap interested our research team to establish standard values for interalar width (IAW) and intercanine distance (ICD) in Sudanese adults, evaluate the correlation between IAW and ICD, and calculate a clinically meaningful ratio to aid in anterior tooth selection.

METHODOLOGY

Study Design, Population, and Sample Size

This cross-sectional study was conducted at the Dental Clinic, University of Khartoum, Sudan. A total of 114 Sudanese individuals (45 men and 69 women), nationals between the ages of 19 and 60 who have a full natural dentition with an Angle's Class I occlusion and no history of facial trauma or orthodontic treatment, were selected conveniently. Exclusion criteria include craniofacial abnormalities, significant tooth wear, restorations, or periodontal disease.

Measurements

Interalar Width (IAW) is the distance between the ala of the nose from one side to the other side [6, 7]. IAW was measured as the linear distance between the most lateral points of the alae of the nose using a NAREX digital tin wrap with an accuracy of 0.01 mm. Participants were sitting in a vertical position, with relaxed lips. The caliper was carefully placed on the external convexity of each IAW without using pressure (Figure 1). This method has been widely confirmed in previous anthropometric studies [8–10].

Intercanine distance (ICD) is the straight line from the tip of the canine from one side to the other [7]. Measurements were performed between the tips of the right and left canine cusps using the same digital device (Figure 2). ICD was measured from the maxillary cast. The cast was prepared from alginate impressions and was poured into dental stone Class III. This method followed standard procedures documented in the prosthetic literature [10, 11–13]. All measurements were recorded three times by the same examiner (N.E.) to ensure consistency, and the mean values were used in the analysis.

Ethical Considerations

With ethical approval (IRB No. NRU-Dent/2020/014) from the Research Ethics Committee of the Faculty of Dentistry at the University of Khartoum, this cross-sectional study was conducted at Khartoum University Dental Clinic (2020–2021). Written consent was obtained from the patients, and they agreed to the publication of their photos.

Figure 1: Measuring the interalar width with an electronic digital caliper.

Figure 2: Measuring the maxillary intercanine distance with an electronic digital caliper from the

Data Analysis

Data were processed using SPSS V26.0. Pearson's correlation assessed the linear relationship between the IAW and ICD. Independent t-tests compared the means between the two independent gender groups $(\alpha$ =0.05).

RESULTS

Demographic Distribution

The sample in this study consisted of 114 Sudanese adults (45 men and 69 women) with a mean age of 34.2 ± 8.7 years. Participants were selected to represent a typical adult population in Sudan with natural dentition and balanced occlusion.

Descriptive Analysis of Interalar Width and Intercanine Distance

The mean interalar width (IAW) of the total sample was 40.00 ± 3.8 mm, with statistically significant gender differences (male: 42.7 ± 3.2 mm, female: 38.3 ± 3.5 mm, p < 0.001), as seen in Table 1.

The mean intercanine distance (ICD) was 35.93 ± 2.1 mm, also showing a significant gender-based difference (males: 37.1 ± 1.9 mm, females: 35.19 ± 1.7 mm, p = 0.003) (Table 1).

These results confirmed that IAW and ICD are significantly greater in males than in women.

Correlation Analysis

Pearson's correlation coefficient revealed a strong positive correlation between IAW and ICD across the sample (r = 0.82, p = 0.007).

Derived Predictive Ratio

A predictive ratio was calculated to assist in estimating the intercanine distance from the interalar width:

IAW/ICD ratio = 1.1 (95% CI: 1.07–1.13).

This suggests that, on average, the distance of the intercanine can be estimated by dividing the interalar width by 1.1 or equivalent (Table 1).

This ratio was found to be consistently reliable across the full sample, with no significant outliers.

Gender-Stratified Correlation

Gender analysis showed r = 0.78 (p = 0.012) for males and r = 0.80 (p = 0.008) for females.

This consistency across gender further supports the use of the IAW/ICD ratio as a population-specific guideline for the Sudanese demographic.

Table 1: The correlation between interalar width (IAW) and Intercanine (ICD) among the studied Sudanese

Parameter	Overall (n = 114)	Males (n = 45)	Females (n = 69)	p-value
IAW (mm)	40.00 ± 3.8	42.7 ± 3.2	38.3 ± 3.5	<0.001
ICD (mm)	35.93 ± 2.1	37.1 ± 1.9	35.19 ± 1.7	0.003
IAW/ICD Ratio	1.1	1.15	1.09	_

IAW: Interalar Width. ICD: Intercanine Distance.

These results validate the hypothesis that interalar width is a reliable anatomical landmark for estimating the appropriate anterior tooth width in the Sudanese population. Given the significant correlation and consistency of the 1.1 ratio, this method may serve as a practical clinical tool, particularly in cases missing pre-extraction records.

DISCUSSION

The selection of maxillary anterior teeth in edentulous patients remains a critical issue for

prosthetic prostheses, especially when preextraction records are not available prior to exclusion. A strong correlation was conducted between interalar width (IAW) and intercanine (ICD) (r = 0.82, p = 0.007). This confirms the hypothesis that interalar width (IAW) as a reliable predictor of the mesiodistal width of the anterior teeth in Sudanese populations is useful [10,12].

These findings are in agreement with numerous earlier studies. For example, Mahmood et al. [10] conducted research in Pakistan and discovered a

notable correlation between IAW and the size of anterior teeth, concluding that IAW can serve as a reference for selecting anterior teeth within their demographic [10]. Likewise, Ayub et al. reported a similar correlation between nasal width and the combined mesiodistal width of the six anterior teeth in dentate individuals residing in Peshawar [14].

Our suggested ratio (IAW/ICD = 1.1) corresponds with the values observed in Arab populations (1.1), and is marginally lower than those documented for Caucasians (1.15), while being higher than the figures for Asian populations (1.05) [10,12,15]. This highlights the necessity for ethnicity-specific guidelines in denture aesthetics. Additionally, Attokaran et al. (Kerala, India) identified a robust relationship between IAW and ICD, especially among females [15].

The gender differences identified in our research reflect universal trends. Males verified more interalar and intercanine measurements, aligning with the results stated by Pisulkar et al. and Ghimire et al. [11,12]. Such variances advocate implementation of gender-adjusted standards in tooth selection to recover esthetic results. Nevertheless, there is a contrasting suggestion. Qamar et al. [16] and Varjão & Nogueira [18] concluded that interalar width (IAW) is not a reliable predictor across different populations, revealing a weak or nonexistent correlation between IAW and the width of anterior teeth [16,18]. These results underscore the geographic and racial diversity in craniofacial anatomy and emphasize the importance of utilizing population-specific data.

Recent publications challenge the universality of IAW as a predictive tool. Ndombolo et al. [18] found no significant IAW-ICD correlation in a Bantu population, concluding that IAW alone is unsatisfactory for teeth selection [18]. Likewise, Ali Hameed et al. noted that IAW correlated with ICD only in tapered arch forms, suggesting dental arch morphology influences these associations [7]. Wang et al. [9] highlighted that while IAW, intercanthal distance (ICD), and intercommissural width (ICW) correlate with ICD, they cannot directly predict tooth width without accounting for age and gender differences [9].

Improvements in machine learning offer promising alternatives. Ramachandran et al. [23] established a random forest model that accurately predicted maxillary central incisor width using facial anthropometric data, achieving 96% precision [23]. Such AI-driven approaches could complement oldstyle methods, particularly in diverse populations where anatomical variability limits single-parameter reliability.

Limitations

This research took place at a singular location using a limited participant pool (n=114), which restricts its generalizability. Moreover, only individuals with teeth present were assessed. Although the relationship between IAW and ICD was significant, it remains unclear if this applies to completely edentulous or elderly groups, where bone resorption may modify the foundational arch dimensions [7, 8].

Recommendations

Forthcoming research should involve edentulous individuals to confirm if the suggested 1.1 ratio is appropriate in cases of complete dentures [7]. A larger, multi-center study about various regions of Sudan is essential to improve the representativeness of the conclusions [9]. Furthermore, a proportional of extra facial indices such intercommissural width, intercanthal distance, or bizygomatic distance may support the development of a multifactorial approach for selecting anterior teeth [8,19,22,23]. Furthermore, incorporating AIdriven facial investigation systems could improve accuracy and simplify personalized treatment planning [4].

CONCLUSION

The significant relationship between IAW and ICD endorses the application of a 1.1 ratio as a dependable reference for choosing anterior teeth in edentulous patients from Sudan. This research delivers important anthropometric evidence that enhances prosthodontic studies in less-represented groups.

Acknowledgments

The authors thank the patients and staff of the Dental Clinic, Faculty of Dentistry at the University of Khartoum, Sudan, for their support in facilitating this study.

Conflict of Interest

The authors declare that there is no conflict of interest.

REFERENCES

- [1] Al-Gunaid, T., Yamashita, S., Shibeeb, T., Al-Dharrab, A., & Al-Haj Ali, S. N. (2022). Influence of digital smile design on the perception of smile aesthetics. *Journal of Prosthetic Dentistry*, 128(4), 567-573. https://doi.org/10.1016/j.prosdent.2021. 05.021
- [2] Kumar, P., Singh, G., Singh, R., & Kaur, R. (2021). Comparative evaluation of patient satisfaction with removable and fixed implant prostheses: A systematic review. *Journal of Prosthodontics*, *30*(5), 412-418. https://doi.org/10.1111/jopr.13345
- [3] Al-Rawi, N. H., Al-Saffar, Z. M., & Al-Khafaji, T. J. (2024). Artificial intelligence in prosthodontics: Current applications and future perspectives. *International Journal of Dentistry*, 2024, 5543212. https://doi.org/10.1155/2024/5543212
- [4] El-Dawlatly, M. M., Al-Saleh, S. A., & Al-Hummayani, F. M. (2023). The impact of digital workflows on the marginal fit of ceramic crowns: A clinical study. *Clinical Oral Investigations*, *27*(2), 789-797. https://doi.org/10.1007/s00784-022-04842-x
- [5] Gomez-Polo, M., Ortega, R., Gomez-Polo, C., Celemin, A., & del Rio, J. (2021). Does the type of implant prosthesis affect outcomes in the atrophic maxilla? A systematic review. *Journal of Dentistry*, 112, 103736. https://doi.org/10.1016/j.jdent.2021.103 736
- [6] Ndombolo, G. B., Milolo, A. M., Bushabu, F. N., Kazadi, E. K., A-Ntumba, P. K., Bukama, J. M. K., Tshilumba, E. L., & Isouradi, J. P. S. (2024). Relationship between intercanine

- width and interalar width, intercommissural width, and intercanthal distance: A pilot study. *Open Journal of Stomatology*, 14, 279-290. https://doi.org/10.4236/ojst.2024.14602
- [7] Ali Hameed, H., Al-Jammali, Z. M., & Alam, M. K. (2025). A comparative study on the mesiodistal width of the maxillary anterior teeth using several extraoral factors in different arch forms and palatal forms. Pesquisa Brasileira em Odontopediatria e Clínica Integrada, 25, e240160. https://doi.org/10.1590/pboci.2025.117
- [8] Ndombolo, G. B., Milolo, A. M., Bushabu, F. N., Kazadi, E. K., A-Ntumba, P. K., Bukama, J. M. K., Tshilumba, E. L., & Isouradi, J. P. S. (2024). Relationship between intercanine width and interalar width, intercommissural width, and intercanthal distance: A pilot study. *Open Journal of Stomatology*, 14, 279-290. https://doi.org/10.4236/ojst.2024.14602
- [9] Wang, J., Li, F. L., Yang, H. X., & Li, L. M. (2024). Correlation between different points on the face and the width of maxillary anterior teeth. *Heliyon*, 10, e27642. https://doi.org/10.1016/j.heliyon.2024.e2 7642
- [10] Ayub, N., Khan, M. S., & Chughtai, M. A. (2022). Correlation of interalar width and maxillary intercanine width in dentate subjects of Gandhara University, Peshawar. *Journal of Khyber College of Dentistry*, 12(3), 40-45.
- [11] Attokaran, G., & Shenoy, K. (2018). Correlation between interalar distance and mesiodistal width of maxillary anterior teeth in Thrissur, Kerala, Indian population. *Journal of International Society of Preventive and Community Dentistry, 8*(5), 405-410.

- https://doi.org/10.4103/jispcd.JISPCD_18 0_18
- [12] Ghimire, B., Dhital, S., & Neupane, P. (2021). Relationship of interalar and intercommissural distance with the width of maxillary anterior teeth. *Journal of Nepalese Prosthodontic Society*, 4(2), 91-96.
- [13] Mahmood, Z. (2020). Correlation between interalar width and size of natural maxillary anterior teeth [Unpublished master's thesis]. Fatima Memorial Hospital Dental College.
- [14] Parciak, E. C., Dahl, K. E., Derakhshandeh, R., & Att, W. (2017). Fracture resistance of monolithic zirconia crowns with different occlusal thicknesses. *Journal of Prosthetic Dentistry*, 118(4), 504-510. https://doi.org/10.1016/j.prosdent.2016. 11.023
- [15] Deogade, S. C., Mantri, S. S., & Rajoriya, S. (2019). The relationship between innercanthal dimension and interalar width to the intercanine width of maxillary anterior teeth in central Indian population. *Journal of Prosthodontics*, 28(3), e716-e722. https://doi.org/10.1111/jopr.13035
- [16] Qamar, K., Hussain, M. W., & Naeem, S. (2011). The role of the interalar width in the anterior teeth selection. *Pakistan Oral and Dental Journal*, *31*(2), 253-257.
- [17] Pisulkar, S., Nimonkar, S., Bansod, A., Belkhode, V., & Godbole, S. (2022). Quantifying the selection of maxillary anterior teeth using extraoral anatomical landmarks. *Cureus*, 14(7), e27410. https://doi.org/10.7759/cureus.27410
- [18] Varjão, F. M., & Nogueira, S. S. (2006). Nasal width as a guide for the selection of maxillary complete denture anterior teeth in four racial groups. *Journal of Prosthodontics*, 15(5), 353-358.

- https://doi.org/10.1111/j.1532-849X.2006.00138.x
- [19] Kalambe, C. M. (2016). Determination of proportional relationships between maxillary intercanine distance and various facial dimensions: A cross-sectional study. *International Journal of Ethics, Trauma & Victimology, 2*(12), 30-37.
- [20] Patel, J. R., Sethuraman, R., N, Y. G., & Shah, M. H. (2011). A comparative evaluation of the relationship of innercanthal distance and inter-alar width to the inter-canine width amongst the Gujarati population. *Journal of Advanced Oral Research*, *2*(3), 120-125.
- [21] Suhasini, J. S., & Suresh, V. (2020). Comparing the anthropometric measurements as a tool for anterior teeth selection. *RGO Revista Gaúcha de Odontologia, 68*, e20200055. https://doi.org/10.1590/1981-863720200005520200055
- [22] El-Sheikh, N. M. A., Bairam Mendilawi, L. R., & Khalifa, N. (2010). Intercanthal distance of a Sudanese population sample as a reference for selection of maxillary anterior teeth size. *Sudan Journal of Medical Sciences*, *5*(2), 117-121.
- [23] Ramachandran, R. A., Koseoglu, M., Özdemir, H., et al. (2024). Machine learning model to predict the width of maxillary central incisor from anthropological measurements.

