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ABSTRACT 

This study applied geo-additive regression modelling on high-dimensional data with metrical 

and categorical predictors, using data from the latest Nigeria Demographic and Health Survey 

(NDHS-6). The sampled data comprises ninety-three predictors of total children ever born by 

eighty women of age group between fifteen and forty-nine years. Three penalty-based 

variable selection criteria—Elastic Net, Smoothly Clipped Absolute Deviation (SCAD), and 

Minimax Concave Penalty (MCP) were employed to reduce the dimensionality of the data. 

Geo-additive regression model were thereafter applied on the selected predictors to 

determine the impact of metrical, categorical and spatial predictors on the response variable. 

Findings revealed that predictors such as contraceptive use, age at first birth, and marital 

status are major determinants of total children ever born by a woman in Nigeria. Furthermore, 

spatial analysis revealed regional disparities in fertility rates within Nigeria, with notably 

higher fertility rate in northeastern states. This study’s findings have broad applications 

across disciplines. By providing robust methodologies for handling complex datasets, this 

research supports evidence-based decision-making in public health, agriculture, and 

environmental policy. Ultimately, these findings contribute to efforts aimed at promoting 

sustainable development and enhancing maternal and child health outcomes in Nigeria and 

similar contexts globally. 
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Introduction 

Fertility is a critical demographic factor that 

significantly impacts population growth and 

socioeconomic development, particularly in 

developing nations like Nigeria. A key measure of 

fertility is the total number of children ever born 

(CEB) to a woman, which offers insights into both 

individual reproductive behaviour and societal 

trends[1]. Understanding the determinants of CEB is 

essential for implementing effective population 

management strategies, family planning initiatives, 

and public health policies. Nigeria ranks among the 

countries with the highest fertility rates globally, 

with notable regional disparities driven by diverse 

cultural, economic, and geographic factors. These 

complexities necessitate sophisticated analytical 

methods to accurately capture fertility patterns and 

their determinants [2].  

Geo-additive regression modeling has emerged as an 

innovative approach to fertility analysis, offering a 

more nuanced alternative to traditional linear 

models. This methodology simultaneously 

incorporates fixed effects—such as demographic, 

socioeconomic, and cultural variables—and spatial 

effects, which address geographical variations[3]. 

Such a framework is particularly relevant for Nigeria, 

where stark geographic disparities influence factors 

like education, income, healthcare access, and 

cultural norms. By integrating spatial data, geo-

additive models provide region-specific insights that 

conventional models often fail to capture[4]. 

Fertility in Nigeria varies significantly across regions. 

For example, northern regions consistently exhibit 

higher fertility rates compared to southern regions[2]. 

These differences can be attributed to a range of 

factors, including cultural norms, religious beliefs, 

limited access to contraceptives, and lower levels of 

female education. Traditional regression models 

often overlook these spatial variations, resulting in 

incomplete or biased interpretations of fertility 

trends. Geo-additive regression models address this 

gap by incorporating geographical information, 

allowing for a more comprehensive analysis of the 

interplay between location and fertility 

determinants[5]. 

Education plays a particularly influential role in 

shaping fertility patterns. Studies show that higher 

levels of female education correlate with reduced 

fertility rates, as educated women tend to delay 

marriage and childbirth and are more likely to use 

contraceptives effectively. Similarly, access to 

healthcare services and family planning resources 

varies widely across Nigeria, with rural areas 

experiencing significant disadvantages. Geo-additive 

models effectively map these disparities, enabling 

policymakers to identify and address region-specific 

barriers to fertility regulation[6]. 

Cultural and religious influences also shape fertility 

outcomes. Predominantly Islamic northern Nigeria, 

for instance, exhibits fertility patterns distinct from 

the predominantly Christian southern regions due to 

differing cultural expectations regarding family size 

and contraceptive use. Geo-additive regression 

modeling captures these variations by incorporating 

spatially contextual data, offering a more detailed 

understanding of fertility dynamics across the 

country. 

In conclusion, geo-additive regression modeling 

represents a powerful tool for analyzing fertility, 

particularly in contexts characterized by pronounced 

regional disparities. By accommodating both fixed 

and spatial effects, this method enables a nuanced 

exploration of fertility determinants, providing 

valuable insights for designing targeted 

interventions. Such approaches are critical for 

addressing high fertility rates in Nigeria and 

fostering sustainable socioeconomic development[7]. 

Beyond spatial factors, a range of socioeconomic 

variables also impacts fertility in Nigeria. These 

include age at first marriage, education level, 

employment status, and wealth index[8]. For example, 

women with higher educational attainment generally 

have fewer children, while those in poorer 

socioeconomic circumstances tend to exhibit higher 
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fertility rates due to limited access to family planning 

services[2]. Geo-additive modeling facilitates the 

analysis of these socioeconomic factors while 

accounting for spatial dependencies and geographic 

variations[9]. 

Although prior studies have employed various 

statistical methods to model fertility, many of these 

focus solely on socioeconomic factors or spatial 

patterns[10]. Geo-additive regression modeling, 

however, provides a more holistic approach, 

capturing the complexities of fertility behaviour by 

integrating both spatial and non-spatial factors. This 

approach can assist policymakers and researchers in 

identifying general determinants as well as region-

specific influences, supporting more targeted and 

effective interventions[11]. 

This study seeks to apply geo-additive regression 

modeling to analyze the total number of children 

ever born to selected Nigerian women. The goal is to 

identify the critical socioeconomic and geographic 

factors influencing fertility in Nigeria, with particular 

attention to regional disparities. In doing so, the 

study aims to offer insights into the spatial 

dimensions of fertility and provide 

recommendations for policies to reduce fertility 

rates and improve reproductive health outcomes in 

Nigeria. 

Methods 

Data for this study were obtained from the 6th 

Nigeria Demographic and Health Survey conducted 

in 2018. Access to the data was granted after 

registration and necessary approvals were secured 

from the DHS program website: 

www.DHSprogram.com/Data. The response variable 

is the total number of children ever born (TCEB) by 

women in each household (whether dead or alive) at 

the time of the 2018 NDHS survey. 

A total of 93 (p = 93) metric and categorical 

predictors were identified in the survey data as 

potential predictors of TCEB. Eighty (80) women 

were randomly selected without replacement, 

creating a high-dimensional dataset due to the large 

number of predictors. The number of women 

selected was constrained by the number of available 

predictors. The TCEB for the 80 selected women 

ranged from 1 to 6, with a mean of 3.04 and a 

variance of 2.80. Descriptions of the metrical and 

categorical predictors are provided in Table 1 and 

Table 2, respectively. 

Data analysis 

The initial task in modeling high-dimensional data 

involves reducing its dimensionality using 

appropriate criteria. This study employed penalty-

based criteria for dimensionality reduction, 

including Elastic Net[12], Smoothly Clipped Absolute 

Deviation (SCAD)[13], and Minimax Concave Penalty 

(MCP)[14]. Data analyses were performed using R 

statistical software (Version 4.1.0), with the glmnet 

package (version 4.1-1) for Elastic Net feature 

selection and the ncvreg package (version 3.13.0) for 

SCAD and MCP criteria. 

The cv.glmnet and cv.ncvreg functions, which utilize 

cross-validation (CV) folds, were used to search for 

the optimal shrinkage parameter (λ). Cross-

validation involves partitioning the original sample 

into subsets, with some subsets serving as the 

training set and others as the test set. For this study, 

4-fold cross-validation was employed, randomly 

dividing the observations into four equal groups. 

Each group was treated as a validation set in turn, 

with the method fitted on the remaining three 

groups. This process was repeated four times to 

ensure robustness. 

The tuning parameter (α) for the Elastic Net criterion 

ranges from 0 to 1[15]. For this study, α values of 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, and 0.7 were used. Tuning 

parameters greater than 2 are recommended for 

SCAD, while tuning parameters greater than 1 was 

recommended for MCP[16]; this study however 

compared the variable selection performances of 

both SCAD and MCP at tuning parameters 3, 4, 5, 10, 

15, 20, and 30. 
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All possible combinations of cross-validation folds 

and tuning parameters were considered in the 

analysis. After dimensionality reduction, geo-

additive models were fitted to the selected predictors 

using a Bayesian approach, with appropriate priors 

assigned to the model parameters. Monte Carlo 

Markov Chain (MCMC) simulations, involving 10,000 

iterations, were used for posterior estimation. To 

minimize autocorrelation, thinning was applied to 

the Markov Chain by storing every 10th sampled 

parameter. The penalized likelihood method was 

used for estimating the parameters of the geo-

additive model, allowing for simultaneous variable 

and model selection. This method determines 

whether: 

1. A predictor should be included in the model, 

2. A continuous variable should enter the model 

linearly or nonlinearly, 

3. A spatial variable should be included in the 

model. 

In the geo-additive model, a map object in boundary 

format is required to estimate the weights associated 

with neighbouring regions. This auxiliary object 

contains the boundary information of geographical 

maps; in this study, a map object of Nigeria was used. 

The geo-additive model was fitted using the 

R2bayesx package in the R statistical software 

(Version 4.1.0). 

The three geo-additive models fitted to the selected 

significant predictors of TCEB are as follows: 

Model 1R 

𝜂1

= 𝛽0 + 𝛽1(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑠𝑡𝑎𝑡𝑒)

+ 𝛽2(𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑒𝑝𝑡𝑖𝑣𝑒)

+  𝛽3(𝑀𝑎𝑟𝑖𝑡𝑎𝑙_𝑠𝑡𝑎𝑡𝑢𝑠) + 𝑓(𝑁𝑢𝑚𝑏𝑒𝑟_𝑖𝑛_ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑)

+ 𝑓(𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝑢𝑛𝑑𝑒𝑟_𝑓𝑖𝑣𝑒_𝑦𝑒𝑎𝑟𝑠)

+ 𝑓(𝑆𝑝𝑎𝑡𝑖𝑎𝑙)                                                                (1) 

Model 2R 

𝜂2

= 𝛽0 + 𝛽1(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑠𝑡𝑎𝑡𝑒)

+ 𝛽2(𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑒𝑝𝑡𝑖𝑣𝑒)

+ 𝛽3(𝑀𝑎𝑟𝑖𝑡𝑎𝑙_𝑠𝑡𝑎𝑡𝑢𝑠) + 𝑓(𝐴𝑔𝑒_𝑎𝑡_𝑓𝑖𝑟𝑠𝑡_𝑏𝑖𝑟𝑡ℎ)

+ 𝑓(𝑁𝑢𝑚𝑏𝑒𝑟_𝑖𝑛_ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑)

+ 𝑓(𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝑢𝑛𝑑𝑒𝑟_𝑓𝑖𝑣𝑒_𝑦𝑒𝑎𝑟𝑠)

+ 𝑓(𝑆𝑝𝑎𝑡𝑖𝑎𝑙)                                                             (2) 

Model 3R  

𝜂3

= 𝛽0 + 𝛽1(𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡_𝑅𝑒𝑔𝑖𝑜𝑛)

+ 𝛽2(𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛_𝑙𝑒𝑣𝑒𝑙) + 𝛽3(𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑠𝑡𝑎𝑡𝑒)

+ 𝛽4(𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑒𝑝𝑡𝑖𝑣𝑒)

+  𝛽5(𝑀𝑎𝑟𝑖𝑡𝑎𝑙_𝑠𝑡𝑎𝑡𝑢𝑠)

+ 𝛽6(𝑅𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑛𝑡_ℎ𝑒𝑎𝑙𝑡ℎ𝑐𝑎𝑟𝑒)

+ 𝑓(𝐵𝑖𝑟𝑡ℎ_𝑖𝑛_𝑙𝑎𝑠𝑡_𝑓𝑖𝑣𝑒_𝑦𝑟𝑠)

+ 𝑓(𝐴𝑔𝑒_𝑎𝑡_𝑓𝑖𝑟𝑠𝑡_𝑏𝑖𝑟𝑡ℎ)

+ 𝑓(𝑁𝑢𝑚𝑏𝑒𝑟_𝑖𝑛_ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑)

+ 𝑓(𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝑢𝑛𝑑𝑒𝑟_𝑓𝑖𝑣𝑒_𝑦𝑒𝑎𝑟𝑠)

+ 𝑓(𝑆𝑝𝑎𝑡𝑖𝑎𝑙)                                                             (3) 

Model performance metric 

Model selection in this study utilized the improved 

Akaike Information Criterion with bias correction, 

(AICc). The model with the lowest AICc value is 

preferred, as it indicates a better fit with fewer 

parameters. AICc is an enhancement of the 

traditional Akaike Information Criterion (AIC) aimed 

at addressing potential biases in model selection, 

especially in small samples or complex models[17]. 

Traditional AIC can be biased when sample sizes are 

small or when the number of parameters is large 

relative to the sample size. This bias can lead to 

overfitting, where a model with more parameters 

appears better simply because it fits the sample data 

more closely. The corrected version of AIC adjusts for 

finite sample size by adding a correction term to the 

traditional AIC formula. AICc is particularly useful in 

fields such as ecology and biology, where sample 

sizes may be limited, and the risk of overfitting is 

high. However, as sample size increases, the 

correction term becomes negligible, and AICc 

converges to AIC. Therefore, AICc is considered a 
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more general and robust criterion for model 

selection. 

𝐴𝐼𝐶 = 2𝑘 − 2 log(𝐿)                                                (4) 

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
                                       (5)   

where: 

k is the number of estimated parameters in the 

model. 

n is the sample size 

L is the likelihood of the fitted model given the data. 

Results  
Table 1: Description of metrical predictors 

Predictor  Description  

Respondent_Age Age of the respondent in years 

Number_in_household Number of household 

members 

Children_under_five_years Number of children that are 5 

years and below in the 

household 

Births_in_last_five_yrs Number of births in the last 

five years 

Age_at_first_birth Age of respondent at first birth 

in years 

Age_first_cohabitation Age of respondent at first 

cohabitation in years 

Years_first_cohabitation Years since the first 

cohabitation 

Age_first_sex Age of respondent at first sex 

in years 

Time_since_last_sex Time since last sex in months 

Months_of_abstinence Months of abstinence from sex 

by respondent 

Age_of_partner Husband/Partner’s age in 

years 

Preceding_birth_interval Preceding birth interval of last 

child in years 

Succeeding_birth_interval Succeeding birth interval of 

last child in years 

Table 2: Description of categorical predictors, their levels 

and percentage across levels 

Predictor  Description  % of women by 

category  

Respondent_Region Geo-political 

zone of the 

respondent  

North-West (17%) 

North-East (20.6%) 

North-Central 

(31.3%) 

South-West (10.3%) 

South-South (9.8%) 

South East (11%) 

Residence_type Type of place 

of residence 

Urban (34.6%) 

Rural (65.4%) 

Previous_residence Type of place 

of previous 

residence 

City (6.8%) 

Town (14%) 

Countryside (79.2%)  

Previous_state State of 

previous 

residence 

36 States of Nigeria + 

FCT  

Education_level Highest 

educational 

level of the 

respondent 

No education 

(49.9%) 

Primary (19.8%) 

Secondary (24.1%) 

Higher (6.1%) 

Wealth_index Wealth index Poorest (24.4%) 

Poorer (23.1%) 

Middle (21.3%) 

Richer (18.2%) 

Richest (13%) 

Had_terminated_ 

pregnancy 

Whether the 

respondent 

ever had a 

terminated 

pregnancy 

No (84.6%) 

Yes (15.4%) 

Current_ 

contraceptive 

Current 

contraceptive 

method used 

by 

respondent  

Not using (84.2%)  

Pill (1.4%) 

IUD (0.9%) 

Injection (3.6%) 

Male condom (1.1%) 

Female sterilization 

(0.3%) 

Periodic abstinence 

(1.3%) 

Withdrawal (1.9%) 

Other traditional 

method (0.6%) 

Implants/Norplants 

(3.6%) 

Lactational 

Amenorrhea (1.1%) 

Female condom 

(0.00011%) 

Emergency 

contraception (0.1%) 

Other modern 

method (0.038%) 

Standard days 

method (0.036%) 
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Last_birth_CS Last birth 

was through 

operation 

(CS)  

No (98.4%) 

Yes (1.6%) 

Marital_status Current 

marital status 

of 

respondent  

Never in union 

(1.2%) 

Married (89.4%) 

Living with partner 

(2.4%) 

Widowed (4.4%) 

Divorced (1.2%) 

Separated (1.3%) 

 
Table 3: Number of features selected by Elastic Net (0 < 

α < 1), SCAD (3 ≤ γ ≤ 30) and MCP (3 ≤ γ ≤ 30) at 4-fold 

cross-validation 

Elastic Net SCAD MCP 

𝛼 features  

selected 

 

γ features  

selected 

 

γ features  

selected 

 

0.1 19 3 7 3 0 

0.2 11 4 7 4 0 

0.3 11 5 7 5 0 

0.4 11 10 7 10 7 

0.5 11 15 7 15 7 

0.6 11 20 7 20 7 

0.7 11 30 7 30 7 

Table 4: Summary of categorical and metrical features 

selected by Elastic Net, SCAD and MCP 

7 features  11 features 19 features 

Metrical predictors 

Number_in_ 

household 

Number_in_ 

household 

Number_in_ 

household 

Children_under_

five_years 

Children_under_ 

five_years 

Children_under_five_ 

years 

 Age_at_first_birth Age_at_first_birth 

  Births_in_last_five_yrs 

Categorical predictors 

Previous_state 

(2 levels: Akwa-

Ibom, Nasarawa) 

Ref: Abia 

Previous_state (5 

levels: Akwa-Ibom, 

Delta, Kwara, 

Lagos, Nasarawa) 

Ref: Abia 

Previous_state (6 

levels: Akwa-Ibom, 

Delta, Kwara, Lagos, 

Nasarawa, Oyo) Ref: 

Abia 

Current_contrac

eptive (1 level 

other traditional 

method) Ref: 

Diaphragm 

Current_contracep

tive (1 level: other 

traditional 

method) Ref: 

Diaphragm 

Current_contraceptiv

e (2 levels: pill, other 

traditional method) 

Ref: Diaphragm 

Marital_status (2 

levels: never in 

union, widowed) 

Ref: Divorced 

Marital_status (2 

levels: never in 

union, widowed) 

Ref: Divorced 

Marital_status (3 

levels: married, never 

in union, widowed) 

Ref: Divorced 

  Respondent_Region 

(1 level: South-East) 

  Education_level (2 

levels: no education, 

primary) Ref: higher 

education 

  Respondent_healthca

re (1 level: 

Respondent partner) 

Ref: Husband/partner 

alone 

 

The significant predictors of Total Children Ever 

Born (TCEB) selected using penalty-based criteria 

are shown in Table 3 and Table 4. The results indicate 

that for the Elastic Net criterion, the number of 

predictors selected remains consistent for tuning 

parameter values between 0.2 and 0.7. For the SCAD 

criterion, the number of predictors selected remains 

the same across all tuning parameter values. For the 

MCP criterion, the number of predictors selected is 

consistent for tuning parameter values of 10, 15, 20, 

and 30. However, no predictors were selected by 

MCP at tuning parameters of 3, 4, and 5. 

These selected predictors were used to develop three 

geo-additive models by including the spatial variable 

of Nigerian states. Model 1R includes five predictors 

that were commonly selected by all criteria: previous 

state lived in by the respondent, current 

contraceptive use, marital status, number of people 

in the household, and number of children under five 

in the household. Model 2R includes all predictors 

from Model 1R plus the age of the respondent at first 

birth. Model 3R includes all predictors from Model 

2R plus the respondent's region, education level, 

person responsible for the respondent's healthcare 

needs, and number of births in the last five years. 

Table 5 provides the parameter estimates for 

predictors modeled parametrically as fixed effects in 

the three models. Model 2R has the lowest AICc, 

indicating it is the preferred model, and 
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interpretations are based on this model. It was 

observed that women who previously lived in Delta, 

Enugu, and Kaduna States have 91.04%, 220.11%, 

and 50.68% higher TCEB, respectively, compared to 

those who previously lived in Abia State. 

Additionally, the age of the respondent at first birth, 

initially assumed to have a non-linear effect on TCEB 

has a linear effect. An increase in the age of a woman 

at first birth by one year reduces her TCEB by 4.52%. 

 
Figure 1: Non-linear effect of number of household 

members on TCEB in Model 2R 

Figure 1 illustrates the non-linear effect of the 

metrical predictor "number of household members" 

on TCEB. It shows that TCEB increases with 

household size until it exceeds 15 members, after 

which a decrease is observed before it starts 

increasing again. 

 
Table 5: Estimates of posterior means for fixed effects of 

Models 1R – 3R with 95% credible intervals 
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*Significant predictors at 5% significance level, 

whose 95% credible intervals do not contain zero 

The spatial map in Figure 2a indicates that states in 

red have the highest TCEB, followed by states in grey, 

while states in blue have the lowest TCEB. Figure 2b 

displays the names of States in Nigeria with their 

respective geopolitical zone. 
 

 

 
Figure 2a: Spatial effects of States in Nigeria on TCEB 

 

 

 
Figure 2b: Names of States in Nigeria 

Discussion 

Predictor Selection and Criteria Behavior 

The Elastic Net criterion showed stability in the 

number of predictors selected across a wide range of 

tuning parameter values (0.2 to 0.7). Similarly, SCAD 

demonstrated consistent performance, selecting the 

same number of predictors across all tuning 

parameters. In contrast, MCP revealed a more 

variable pattern, with predictors selected only for 

higher tuning parameters (10, 15, 20, and 30), while 

failing to select any predictors at lower values (3, 4, 

and 5). This variability underlines the importance of 

tuning parameter selection in influencing model 

behaviour, as also emphasized by [16], who noted 

that tuning parameters significantly impact model 

sparsity and predictor stability. 

Model Development 

Three geo-additive models were developed by 

incorporating spatial variables of Nigerian states 

alongside the selected predictors: 

• Model 1R: Focuses on five universally selected 

predictors, including previous state lived in, 

spatial effect of Model 2R
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contraceptive use, marital status, household 

size, and number of children under five. 

• Model 2R: Builds on Model 1R by adding the 

age of the respondent at first birth. 

• Model 3R: Extends Model 2R by including 

region, education level, healthcare 

responsibility, and number of births in the last 

five years. 

Preferred Model and Parameter Estimates 

Based on the Akaike Information Criterion corrected 

(AICc), Model 2R emerged as the preferred model, 

providing a balance between complexity and 

explanatory power. This result aligns with that of 

[17], who emphasized the utility of AICc in selecting 

optimal models in ecological studies. 

In Model 2R, key findings include: 

• Impact of Previous State of Residence: 

Women from Delta, Enugu, and Kaduna States 

exhibit significantly higher TCEB compared to 

those from Abia State, indicating regional 

differences in fertility behaviour. This 

observation aligns with findings of [19], which 

highlighted the influence of regional socio-

cultural factors on fertility. 

• Effect of Age at First Birth: Contrary to the 

initial assumption of non-linearity, age at first 

birth has a linear effect on TCEB. Each 

additional year delays first childbirth, reducing 

TCEB by 4.52%. This finding corroborates 

studies like those by [20], which identified age 

at first birth as a critical determinant of fertility 

outcomes. 

The results of the dimensionality reduction analysis 

indicate that the SCAD and MCP methods performed 

similarly across most tuning parameters. These 

findings are consistent with that of [21], who also 

compared penalized regression methods using 

logistic regression for low-dimensional data. 

Additionally, [22] observed similar performance 

between MCP and SCAD in their Monte Carlo 

simulations for low-dimensional data with ten-fold 

cross-validation, noting that Elastic Net provided 

more conservative estimates. 

However, our results contradict [23], who found 

significant differences in the number of covariates 

selected by MCP and SCAD in low-dimensional 

datasets with normally distributed responses. This 

discrepancy may be attributed to the different data 

types used in each study. Conversely, [24] found that 

SCAD and MCP perform equally well in their 

assessment of penalized regression methods using 

simulated data with a normally distributed response, 

a finding that aligns with our study's use of a non-

Gaussian response. 

While much research has focused on variable 

selection and geo-additive modeling with low and 

high-dimensional data, few studies have addressed 

mixed predictors with count responses. This study 

fills that gap. One major challenge in regression 

analysis is the dimensionality of the data. High-

dimensional data, where the number of explanatory 

variables exceeds the sample size, is common in 

fields such as machine learning [25], genetics [26], 

and medicine [27]. Such data requires sparse 

techniques to identify significant variables and 

eliminate redundant ones. 

This study identified the use of contraceptives and 

the respondent's age at first birth as significant 

factors affecting the number of children ever born 

(TCEB), aligning with the findings of [28]. Marital 

status also emerged as a crucial factor, echoing the 

results of [29] and [30]. It is expected that being 

married or cohabiting increases the likelihood of 

pregnancy and childbirth. The spatial analysis 

revealed higher TCEB in the northeastern states 

compared to the South-south, consistent with [31]. 

Conclusion   

This study evaluated the performance of different 

penalty-based criteria for dimensionality reduction 

and developed geo-additive models to predict the 

number of children ever born (TCEB) based on 

various predictors. The analysis demonstrated that 
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SCAD and MCP methods yielded similar 

performances across most tuning parameters, 

corroborating findings from previous studies. 

However, these results contrast with some studies 

that reported significant differences between these 

methods, likely due to differences in data nature. The 

inclusion of contraceptive use, age at first birth, and 

marital status as significant predictors of TCEB is 

consistent with existing literature, highlighting their 

crucial roles in fertility studies. The spatial analysis 

revealed higher TCEB in the northeastern states 

compared to the South-south, aligning with regional 

demographic patterns. 

This study bridges a significant gap in research by 

addressing mixed predictors with count response, a 

relatively unexplored area. The findings emphasize 

the importance of appropriate dimensionality 

reduction techniques in handling high-dimensional 

data common in various fields, including genetics, 

machine learning, and medicine. By using penalty-

based methods like Elastic Net, SCAD, and MCP, 

researchers can effectively identify significant 

predictors and enhance model accuracy. This study's 

approach and findings offer valuable insights for 

future research and practical applications in 

demographic and health studies, demonstrating the 

utility of geo-additive models in analyzing complex, 

high-dimensional datasets. 
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