
Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

22
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor

with an Efficient Multilevel Cache System

Amin El-Kustaban
(1,*)

, Abdullah Qahtan
(1,*)

Abstract

 Computer designers utilize the recent huge advances in Very Large Scale Integration

(VLSI) to get Chip Multiprocessor (CMP) by placing several processors on the same chip

die. The CMP is the dominant architecture to improve the performance of the current

computing systems. However, accessing a shared data by several processors is a primary

challenge in CMP. The data consistency must be reached among all memory hierarchies to

ensure correct behavior and higher performance. This paper, proposed a CMP with an

efficient multilevel cache system, which enhances miss rate and latency (penalty) by

designing and implementation of different write policies with two levels of cache. The

proposed system is implemented and tested using Hardware Description Language (VHDL)

on Altera’s FPGA chip. The results show that a combination of write-through without buffer

for the first level and write-back for the second level offers a clear improvement on the

multilevel cache system performance.
Keywords: private cache system, write policies, miss penalty, VHDL, FPGA.

1. Introduction
 The technology revolution in Very Large Scale Integration (VLSI) has enabled today’s

designers to design and implement Chip Multiprocessor (CMP), where two or more

processors with a shared memory are integrated on a single chip [1]. In the next few

generations, the number of processors that can be implemented on a single chip will

significantly increase. Some famous research centers such as ParLab at Berkeley, UPCRC-

Illinois, and the Pervasive Parallel Laboratory at Stanford assume that future

microprocessors will have hundreds of cores [2].

1
 Department of Electronic Engineering, Faculty of Engineering, University of Science and Technology, Sana'a,

Yemen
* Correspondence Authors: (a.alkustaban@ust.edu), (a.qahtan2@ust.edu)

http://dx.doi.org/10.20428/JST.20.2.2
mailto:a.alkustaban@ust.edu
mailto:a.qahtan2@ust.edu

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

23
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

CMP performance can be improved by using cache memories. Cache memories significantly

reduce both the bus traffic and the average access time. Moreover, associate a cache
memory with each processor in the multiprocessor environment, is one of the most effective

solutions to the bus bandwidth problem [3, 4].

Since the processors in CMP have fast clock rate, the gap between processors speed and the

relatively long time required to access the main memory becomes wider. To narrow this gab,

microprocessors designers add additional levels of cache. These additional levels, such as a

second level (L2), are accessed whenever a miss occurs in the first-level (L1) of cache. If the

L2 cache contains the requested data, the miss penalty for the L1 cache will be the access

time of the L2 cache, which will be much less than the access time of the main memory. If

the data is not found in the L1 nor the L2, a main memory access is required, and a larger

miss latency is incurred [5]. Also, with multilevel cache the miss rate will be decreased as

long as size increasing of the overall cache memories [6].

The primary challenge in a system that runs multiple processors is how to control the access

to a shared data in order to ensure correct behavior and data consistency, especially when

multilevel caches are used. In bus-based shared memory multiprocessor, many protocols

used to control accesses to that shared data in order to keep the view of memory provided to

the processors consistent. However, the write policies used between cache levels is a critical

point that effect the overall cache system behavior and performance.

In this paper, a CMP with four pipelining MIPS processors is built to validate the proposed

cache system. Then a private multilevel cache with snoop-based MESI cache coherence

protocol is integrated with each processor of the CMP system. In addition, in this proposed

work, many scenarios of multilevel cache system with different write policies and a single

level cache system have been designed and implemented. Then a comparison of these

scenarios is shown.

This paper is organized as follows. Section 2, reviews related works. Section 3, focuses on

designing the proposed multilevel cache system. Section 4, implements the CMP system

with the proposed multilevel cache system using Hardware Description Language (VHDL)

on Field Programmable Gates Arrays (FPGA). Testing the proposed system and comparing it

with other cache system architectures are presented in section 5. Finally, conclusion and

future work are summarized in section 6.

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

24
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

2. Related Work
 Although there are several proposed designs for CMPs use the private L1 cache structure of

traditional multiprocessors, the organization of on-chip L2 resources is not researched well [7].

[8] is a survey that classifies the organizations of multilevel cache into three types. First, a

private hierarchy of caches, this paper follows this type. Second, a private first-level with

shared multiport second-level. Finally, a private first-level with bus-based shared second-

level. Some of the proposed CMP designs implement multilevel cache systems with private

hierarchy [7]. Other proposed designs implement systems with private L1 caches and shared

L2 caches [9-11]. Other designs implement cache systems with two private levels and a third

shared level among all cores [6, 12].

[13] compares three different approaches for ensuring cache coherence in Multiprocessor

System on Chip (MPSoC) architectures, which are snoopy-based, software-based, and OS-

based approaches. The comparison results of different snoop-based cache coherency

schemes, reveals that these schemes have a strong sensitivity to the cache write policies more

than the coherency protocol. Write-back schemes appear to be more efficient by reducing the

traffic on the shared bus. Nonetheless, these schemes increase the hardware complexity of

the cache-coherency, perform out-of-order eviction of data to the lower memory hierarchies,

and unacceptably losses for the data consistency [14].

[15] compares the memory write policies in shared memory multicore system. It compares

write-through invalidate protocol with write-back MESI protocol. Its results shows that

write-through protocol is a simple and possible solution to maintain coherency. Write-

through performs very well in both execution time and generated traffic. However, other

proposed papers in this field say that write-through protocol perform well to ensure data

consistent with drawback of higher write traffic as compared to write-back, since write-

through requires synchronous updates for every write [14, 16].

[9] explores a novel approach to mitigating multicore power consumption by using dynamic

application memory behavior. The main notice is that using only write-through policy causes

more contention on the bus. Moreover, using only write-back policy makes the data in L2

stale relative to the newer data in L1 caches. The proposed solution is to allow a fine-grained

hybrid interaction between write-through and write-back policies to improve the overall

performance. However, it is become more complex to generalize an inclusive state diagram

to manage diverse coherence protocols possessed by each core when the number of the cores

is increased [17].

[14] develops and evaluates two consistent write-back caching policies, ordered and

journaled, that are designed to perform increasingly better than write-through and traditional

write-back policies. Paper’s results show that ordered write-back performs better than write-

through. Additionally, journaled write-back exceeds conventional write-back performance.

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

25
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

However, to my knowledge, no hardware implementations using HDL and FPGA are used to

implement and test the effect of write policies on the behavior correctness of the multilevel

cache systems. Moreover, the miss latency was not discussed in any previous works clearly.

3. The Proposed Multilevel Cache System Design

3.1 Multilevel Cache System Block Diagram
As shown in figure 1, the proposed multilevel cache system consists of two private levels of

cache associated with each processor. Each level of cache consists of four main parts. Which

are data cache entity, tag array, comparator, and cache controller.

Figure(1): The proposed multilevel cache system block diagram

The data cache entity is direct-mapped architecture to save the frequent used data in its blocks.

Each block has additional bits represent the block state and indicate if the block data is valid or

not. The tag array contains an address information, which are required to identify whether the

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

26
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

data in the cache blocks corresponds the requested data. The comparator part is used to

examine the address tag field with the associated tag bits in the cache. The cache controller is

used to check the comparator results and the block state bits value, generate the hit/miss

signal, and serve the request from the cache blocks or from the lower memory hierarchies.

3.2 Cache Coherence Protocol
The selected cache coherence protocol to be applied on the proposed cache system is the

MESI [4], which is illustrated in figure 2 and the explanation of the abbreviation used in MESI

state diagram are listed in table 1. Since there is no communicate between the L1 caches via

the shared bus, the coherence protocol must be applied on the L2 caches which are in touch

with the shared bus. L1 cache takes the required data the block state from L2 cache [5].

Figure(2):MESI state transition diagram

Tabel 1: The explanation of the abbreviation used in MESI state diagram

Abbreviation Description

RH Read Hit in local cache

RM Read Miss in local cache

WH Write Hit in local cache

WM Write Miss in local cache

SBR Snoop Bus Read from remote cache

SBI Snoop Bus Invalidate from remote cache

SS Shared signal on the bus

WB Write back modified (dirty) data

BI Send invalidate signal to all remote caches

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

27
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

3.3 Write Policies and Hit-Miss Actions
3.3.1 First-Level Cache

 Write Policy: The write policy used in L1 cache is write-through, where writes always

update both the cache and the lower level of the hierarchy (either another cache level or main

memory) at the same time. Using write-through policy insures that the data is always

consistent between cache levels.

 Hit State: L1 cache controller monitors every request from the processor. When there is a

 request (Read/Write), the comparator examines the address, the cache controller checks the

comparator results to generate hit or miss signal and serve the request. According to the

MESI protocol, hit occurs in one of the following states:

 For read request: when the tags are equal and the block state is S, E, or M. Then the

requested data is placed on the data bus.

 For write request: when the tags are equal and the block state is E or M. Then the data on the

data bus is written to the corresponding cache block, the block state is updated to M if it was E,

and the Writethrough signal is asserted to write the same data to L2 cache at the same clock.

 Miss State: When there is no hit, miss occurs and the Inhibit signal in figure 1 is asserted

to freeze the processor datapath during the miss manipulation. If the L1 block has a dirty

data belongs to other address, the cache controller asserts the EndInclusion signal and sends

the dirty block address to L2 to inform it that this block will not be exist in L1. Then the

cache controller asserts the DataReq signal and sends the requested data address to L2 cache.

When the requested data is ready, L1 cache puts it with its state in the corresponding block

and asserts the Aknow signal.

3.3.2 Second-Level Cache

 Write Policy

 The write policy used in L2 cache is write-back, which handles writes by updating values

only to the block in the cache, the modified block is writing to the lower level of the

hierarchy (the main memory) in two states. First, when it is replaced. Second, when it is

invalidated by another processor. Using write-back policy is used to reduce the bus traffic

and thus allows more processors on a single bus. During the write process, a write-back

buffer is used to allow the processor to continue as soon as possible on a cache miss that

causes a write-back. It is better to delay the write-back and instead first service the miss that

caused it [4]. Moreover, a cache to cache transfer is supported in the proposed architecture in

order to minimize the miss latency.

Hit State :L2 cache controller monitors every request from the L1 cache and from the bus

side. When there is a request from L1 cache (Writethrough/EndInclusion), the request is

served immediately since such requests cannot be happened if the data block does not exist

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

28
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

in L2 cache. When L1 cache request is DataReq, L2 cache first comparator examines the

incoming address tag field with the associated tag bits in the cache. The cache controller

checks the comparator results and the state bits value to generate the hit/miss signal and

serve the request. Hit occurs in one of the following states:

 The request is done to perform a read process in L1: when the tags are equal and the

block state is S, E, or M. Then the requested data is placed on the intermediate data bus.

 The request is done to perform a write process in L1: when the tags are equal and the

block state is E or M. Then the requested data is placed on the intermediate data bus.

Miss State
When miss occurs, five steps are performed. First, asserting BusReq signal. Second, waiting for bus

Grant. Third, putting address and command on the bus. Fourth, waiting for one of the acknowledgment

signals (CmdReceive, MDataRdy, and StrRec). Finally, transferring the data between the shared bus, L2,

and L1 at the same clock to reduce the miss penalty. Table 2 summarizes the issued commands and the

block states when there is L2 cache request according to MESI cache protocol.

Tabel 2: The command and the block states values according to L2 cache request and MESI protocol

L2 cache Request
Cache Command

(Cmd)
Bus Acknowledgment Signal Block State

Invalidate other cache copies 011 CmdReceive M

Read for exclusive 010
CmdReceive & MDataRdy M

CmdReceive & StrRec M

Read for shared 001
CmdReceive & MDataRdy E

CmdReceive & StrRec S

Write back 111 - -

Release the bus 000 - -

 Snooping Actions
Since the cache coherence protocol is applied in L2 cache because of its contact with the shared

snoopy bus, L2 cache controller monitors (snoop) every transaction on the shared bus. The second

comparator checks if the bus transaction belongs to one of its contents. Then the cache controller takes

the comparator results and checks the block state bits to decide which action must be applied. Table 3

summarize the snooping actions according to the bus transaction and the block state.

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

29
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

Tabel 3: Snooping actions according to the bus transaction and the block state

Bus transaction Current

block state
Snooper action

New

block state Request Snooped Cmd

Read for

exclusive
010

S or E
 Assert DataAvailable signal to supply

the request with the required data.
I

M  Assert WBRequest signal to supply the

request with the required data and write

the dirty data to the main memory, too.

I

Read for shared 001

M S

E  Assert DataAvailable signal to supply

the request with the required data.

S

S S

Invalidate other

cache copies
011 S - I

The DataAvailable/WBRequest signals have the benefit of reducing the miss latency time. It

informs the bus arbitration that the cache has an up-to-date (S or E / M) data, and it can

supply the request with it. When there are many cache on different processors assert this

signal, bus arbitration will choose one of them to supply the data by asserting StrSend signal

to the chosen processor and StrRec with CmdReceive signals to the requester processor, this

action is better than bring the requested data from the main memory , which may take more

time. Also, WBRequest informs the bus arbitration to write the data to the main memory

through the write-back buffer.

If the requested data is not exist in other caches blocks, the request will be supplied from the

main memory. The bus arbitration will read the requested data and asserts MDataRdy with

CmdReceive signals to the requester processor when the memory data is ready on the bus.

4. The Proposed CMP With Multilevel Cache System Implementation

To validate the proposed multilevel cache system, a CMP with four pipelining MIPS processors is built.

Each processor has two private levels of data cache as shown in figure 3. A shared bus connects the

whole system components with each other and with the off-chip main memory. The management of the

shared bus is the responsibility of a central bus arbitration unit.

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

30
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

Figure(3): CMP system’s block diagram
The CMP with the proposed multilevel cache system is implemented using VHDL language

on Altera CycloneII (EP2C35F672C6) FPGA. Moreover, many scenarios of multilevel cache

system with different write policies and a single level cache system have been designed and

implemented. Figure 4 shows the top level Register Transfer Level (RTL) synthesis for the

proposed cache system.

Figure(4): Proposed cache system top-level RTL synthesis

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

31
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

5. Result and discussion
This section compares between the scenarios that are implemented to show the appropriate

architecture for the multilevel cache system. These scenarios are:

 Cache system with write-back L1 cache and write-back L2 cache.

 Cache system with write-through (via buffer) L1 cache and write-back L2 cache.
 The proposed cache system with write-through (without buffer) L1 cache and write-back L2 cache.

 Cache system with only L1 cache.

The results are obtained from a VHDL simulation tool from Mentor Graphics Company,

which is ModelSim. ModelSim has an ability to illustrate the simulation results as waveform

which is an easy way to recognize the required results.

The comparison factors are the miss rate, the miss latency (penalty) and the correct behavior

of the system. Many tests, such as read/write sequence of data from the main memory and

other processors’ cache system, read and modify two blocks that are mapped to the same

cache block from the main memory, have been applied on the four scenarios to verify them.

Table 4, summarizes the implemented cache system test’s result. The simulation results

involve the required time transferring data through the bus. From the results, the proposed

cache system improves the latency by 10% compare to the first and the second scenario. The

fourth scenario is better than the other scenarios. This result is logically correct since the

fourth scenario has only one level of cache. However, the fourth scenario suffers from high

miss rate, which is solved by the second level of cache on the other scenarios. The required

time to complete the write process to both levels is improved in the proposed system by 50%

compare to the first scenario and by 66% compare to the second scenario.
Tabel 4: Cache system test’s result

 Cache System

 Architecture

Comparison Factor

Multilevel cache
Single

level cache First

Scenario

Second

Scenario

The proposed

Scenario

Miss Rate Low Low Low High

Miss Latency
(in clock cycle)

Main Memory 10 10 9 6

Other cache system 9 9 8 5

Lower Cache Hierarchy (L2) 3 3 3 -

Complete a write process from L1 to L2
2
on

replacement
3 1 -

Correct Behaviour x x √ √

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

32
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

Test results show that when write-back policy is used between L1 and L2 cache, the data

consistency cannot be insured between all processors’ cache systems. For example, suppose

that a requested data brought to the cache system from the main memory. This data placed in

L2 and L1 caches with (E) states. Then if the processor needs to modify that data, the new

data will be modified only in L1 cache and the corresponding block state will be modified to

(M) state in L1 cache, too. When other processor requests the same address, L2 controller in

the owned processor will snoop that request. Then it will change its block state to (S) state

and supply the request with a false data since the up-to-date data exists in L1 cache.

In addition, using write-through policy with buffer may cause a conflict between write-

through address and the data request address in some cases, such as the following worst case

example. Suppose that the memory blocks with addresses 255, 127 which are mapped to the

same L1 cache block. In the beginning, both blocks are not exist in the processor’s cache

system. When the processor request address 255 to perform a write instruction. The request

is done and the data is placed in L1 and L2 with (E) or (M) states according to MESI

protocol. Then the new data write process is performed to L1 cache and the write-through

buffer. During write-through process, written data address is sent to L2 cache to perform the
write process. If the processor request address 127, that address will be sent to L2 cache because of

the missing station in L1 cache. As long as write-through is not complete, the write-through address

conflicts with the data request address. This confliction causes an ambiguity in L2 cache which may

provide L1 cache with a false data.

Solving these problems, by using more checking circuits or splitting the address bus, can reduce the

overall performance through increasing the miss penalty, the design complexity, and the overall chip area.

Other scenarios’ problems are solved in the proposed scenario by modifying the write techniques as

described in section 3. The simulation results show that the same cases are performed on the proposed

system without any confusion. The proposed cache system write the new data to the both levels in the

same clock cycle. Moreover, writing the new data to L2 cache is done before writing it to L1 cache by

half of clock cycle. That action makes the new data available to others cache system immediately.

Figure 5 depicts the simulation waveform for the proposed cache system with the worst case example.

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

33
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

Figure(5): Simulation waveform for the proposed cache system

6. Conclusion and Future Work
In this paper, a CMP with multilevel cache system is designed and implemented using VHDL and

FPGA. Using multilevel cache improves the overall performance of CMP. The two-Level direct-

mapped data cache with a snoopy MESI cache coherency protocol is designed and implemented for

each processor. The simulation and implementation results show that when the write-through policy

without buffer in L1 cache is combined with the write-back policy in L2 cache, is the best combination

to get the benefits of multilevel cache. Actually, this combination improves the miss latency by at least

10% compared to other architecture.

This paper can be extended by examining the effects of using more flexible placement techniques

such as the set-associative to reduce the cache miss.

7. References
[1]K. Olukotun, L. Hammond, and J. Laudon, "Chip multiprocessor architecture: techniques to improve

throughput and latency," Synthesis Lectures on Computer Architecture, vol. 2, no. 1, pp. 1-145, 2007.

[2]B. Catanzaro, A. Fox, K. Keutzer, D. Patterson, B.-Y. Su, M. Snir, et al., "Ubiquitous parallel computing from

Berkeley, Illinois, and Stanford," IEEE micro, vol. 30, no. 2, pp. 41-55, 2010.

[3]V. S. Bhure and D. Padole, "Design of Cache Controller for Multi-core Systems using Multilevel Scheduling

Method," in Fifth International Conference on Emerging Trends in Engineering and Technology (ICETET),

Himeji, pp. 167-173, 2012.

http://dx.doi.org/10.20428/JST.20.2.2

Design and Implementation of a Chip Multiprocessor with an Efficient Multilevel Cache System

34
Journal of Science & Technology

Vol. (20) No. (2) 2015

DOI: 10.20428/JST.20.2.2

[4]D. E. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a hardware/software approach, Gulf

Professional Publishing, 1999.

[5]D. A. Patterson and J. L. Hennessy, Computer organization and design: the hardware/software interface,

Newnes, 2013.

[6]L. G. Menezo, V. Puente, and J. A. Gregorio, "The case for a scalable coherence protocol for complex on-chip

cache hierarchies in many core systems," in 22nd International Conference on Parallel Architectures and

Compilation Techniques (PACT), Edinburgh, pp. 279-288, 2013.

[7]R. E. Ahmed, "Cooperative caching in power-aware chip-multiprocessors," in Canadian Conference on

Electrical and Computer Engineering (CCECE'09), St. John's, NL, pp. 195-198, 2009.

[8]M. Tomasevic and V. Milutinovic, "A survey of hardware solutions for maintenance of cache coherence in

shared memory multiprocessors," in The Twenty-Sixth Hawaii International Conference on System Sciences,

pp. 863-872, 1993.

[9]G. Bournoutian and A. Orailoglu, "Dynamic, multi-core cache coherence architecture for power-sensitive

mobile processors," in The 9th International Conference on Hardware/Software Codesign and System Synthesis

(CODES+ ISSS), Taipei, pp. 89-97, 2011.

[10]J. Huh, "On the Partial Inclusion Protocol for Multi Level Cache Hierarchy in Disk Controller," in Sixth

International Conference on Advanced Language Processing and Web Information Technology (ALPIT)

Luoyang, Henan, China, pp. 309-314, 2007.

[11]J.-M. Li, P. Yang, N. Ding, H. Guan, J. Zhang, C. Men, et al., "A New Kind of Hybrid Cache Coherence

Protocol for Multiprocessor with D-Cache," in International Conference on Future Computer Science and

Education (ICFCSE), Xi'an, pp. 641-645, 2011.

[12]Z. Pang, S. Wang, D. Wu, J. Zhang, and P. Lu, "Building efficient transactional memory support based on

snoopy coherence," in 3rd International Conference on Computer Research and Development (ICCRD)

Shanghai, pp. 46-50, 2011.

[13]M. Loghi, M. Poncino, and L. Benini, "Cache coherence tradeoffs in shared-memory MPSoCs," ACM

Transactions on Embedded Computing Systems (TECS), vol. 5, no. 2, pp. 383-407, 2006.

[14]R. Koller, L. Marmol, R. Rangaswami, S. Sundararaman, N. Talagala, and M. Zhao, "Write policies for host-

side flash caches," in 11th USENIX Conference on File and Storage Technologies (FAST'13), pp. 45-58, 2013.

[15]P. G. de Massas and F. Pétrot, "Comparison of memory write policies for NoC based multicore cache

coherent systems," in Design, Automation and Test in Europe (DATE'08), Munich, pp. 997-1002, 2008.

[16]A. K. AG, J. DA, and R. M, "Power and performance efficient secondary cache using tag bloom

architecture," in International Conference on Electronics and Communication Systems (ICES), Coimbatore, pp.

1-5, 2014.

[17]M. Lou and J. Xiao, "Dynamic, Tagless Cache Coherence Architecture in Chip Multiprocessor," in

Foundations of Intelligent Systems: Springer, pp. 201-209, 2014.

http://dx.doi.org/10.20428/JST.20.2.2

