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Abstract 

     Computer designers utilize the recent huge advances in Very Large Scale Integration 

(VLSI) to get Chip Multiprocessor (CMP) by placing several processors on the same chip 

die. The CMP is the dominant architecture to improve the performance of the current 

computing systems. However, accessing a shared data by several processors is a primary 

challenge in CMP. The data consistency must be reached among all memory hierarchies to 

ensure correct behavior and higher performance. This paper, proposed a CMP with an 

efficient multilevel cache system, which enhances miss rate and latency (penalty) by 

designing and implementation of different write policies with two levels of cache. The 

proposed system is implemented and tested using Hardware Description Language (VHDL) 

on Altera’s FPGA chip. The results show that a combination of write-through without buffer 

for the first level and write-back for the second level offers a clear improvement on the 

multilevel cache system performance.  
Keywords: private cache system, write policies, miss penalty, VHDL, FPGA. 

1. Introduction 
 The technology revolution in Very Large Scale Integration (VLSI) has enabled today’s 

designers to design and implement Chip Multiprocessor (CMP), where two or more 

processors with a shared memory are integrated on a single chip [1]. In the next few 

generations, the number of processors that can be implemented on a single chip will 

significantly increase. Some famous research centers such as ParLab at Berkeley, UPCRC-

Illinois, and the Pervasive Parallel Laboratory at Stanford assume that future 

microprocessors will have hundreds of cores [2].  
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CMP performance can be improved by using cache memories. Cache memories significantly 

reduce both the bus traffic and the average access time. Moreover, associate a cache 
memory with each processor in the multiprocessor environment, is one of the most effective 

solutions to the bus bandwidth problem [3, 4].  

Since the processors in CMP have fast clock rate, the gap between processors speed and the 

relatively long time required to access the main memory becomes wider. To narrow this gab, 

microprocessors designers add additional levels of cache. These additional levels, such as a 

second level (L2), are accessed whenever a miss occurs in the first-level (L1) of cache. If the 

L2 cache contains the requested data, the miss penalty for the L1 cache will be the access 

time of the L2 cache, which will be much less than the access time of the main memory. If 

the data is not found in the L1 nor the L2, a main memory access is required, and a larger 

miss latency is incurred [5]. Also, with multilevel cache the miss rate will be decreased as 

long as size increasing of the overall cache memories [6].  

The primary challenge in a system that runs multiple processors is how to control the access 

to a shared data in order to ensure correct behavior and data consistency, especially when 

multilevel caches are used. In bus-based shared memory multiprocessor, many protocols 

used to control accesses to that shared data in order to keep the view of memory provided to 

the processors consistent. However, the write policies used between cache levels is a critical 

point that effect the overall cache system behavior and performance.  

In this paper, a CMP with four pipelining MIPS processors is built to validate the proposed 

cache system. Then a private multilevel cache with snoop-based MESI cache coherence 

protocol is integrated with each processor of the CMP system. In addition, in this proposed 

work, many scenarios of multilevel cache system with different write policies and a single 

level cache system have been designed and implemented. Then a comparison of these 

scenarios is shown.  

This paper is organized as follows. Section 2, reviews related works. Section 3, focuses on 

designing the proposed multilevel cache system. Section 4, implements the CMP system 

with the proposed multilevel cache system using Hardware Description Language (VHDL) 

on Field Programmable Gates Arrays (FPGA). Testing the proposed system and comparing it 

with other cache system architectures are presented in section 5. Finally, conclusion and 

future work are summarized in section 6. 
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2. Related Work 
     Although there are several proposed designs for CMPs use the private L1 cache structure of 

traditional multiprocessors, the organization of on-chip L2 resources is not researched well [7].  

[8] is a survey that classifies the organizations of multilevel cache into three types. First, a 

private hierarchy of caches, this paper follows this type. Second, a private first-level with 

shared multiport second-level. Finally, a private first-level with bus-based shared second-

level. Some of the proposed CMP designs implement multilevel cache systems with private 

hierarchy [7]. Other proposed designs implement systems with private L1 caches and shared 

L2 caches [9-11]. Other designs implement cache systems with two private levels and a third 

shared level among all cores [6, 12].  

[13] compares three different approaches for ensuring cache coherence in Multiprocessor 

System on Chip (MPSoC) architectures, which are snoopy-based, software-based, and OS-

based approaches. The comparison results of different snoop-based cache coherency 

schemes, reveals that these schemes have a strong sensitivity to the cache write policies more 

than the coherency protocol. Write-back schemes appear to be more efficient by reducing the 

traffic on the shared bus. Nonetheless, these schemes increase the hardware complexity of 

the cache-coherency, perform out-of-order eviction of data to the lower memory hierarchies, 

and unacceptably losses for the data consistency [14]. 

[15] compares the memory write policies in shared memory multicore system. It compares 

write-through invalidate protocol with write-back MESI protocol. Its results shows that 

write-through protocol is a simple and possible solution to maintain coherency. Write-

through performs very well in both execution time and generated traffic. However, other 

proposed papers in this field say that write-through protocol perform well to ensure data 

consistent with drawback of higher write traffic as compared to write-back, since write-

through requires synchronous updates for every write [14, 16]. 

[9] explores a novel approach to mitigating multicore power consumption by using dynamic 

application memory behavior. The main notice is that using only write-through policy causes 

more contention on the bus. Moreover, using only write-back policy makes the data in L2 

stale relative to the newer data in L1 caches. The proposed solution is to allow a fine-grained 

hybrid interaction between write-through and write-back policies to improve the overall 

performance. However, it is become more complex to generalize an inclusive state diagram 

to manage diverse coherence protocols possessed by each core when the number of the cores 

is increased [17]. 

[14] develops and evaluates two consistent write-back caching policies, ordered and 

journaled, that are designed to perform increasingly better than write-through and traditional 

write-back policies. Paper’s results show that ordered write-back performs better than write-

through. Additionally, journaled write-back exceeds conventional write-back performance. 
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However, to my knowledge, no hardware implementations using HDL and FPGA are used to 

implement and test the effect of write policies on the behavior correctness of the multilevel 

cache systems. Moreover, the miss latency was not discussed in any previous works clearly. 

3. The Proposed Multilevel Cache System Design  

3.1 Multilevel Cache System Block Diagram 
As shown in figure 1, the proposed multilevel cache system consists of two private levels of  

cache associated with each processor. Each level of cache consists of four main parts. Which 

are data cache entity, tag array, comparator, and cache controller.  

 

Figure(1): The proposed multilevel cache system block diagram 

The data cache entity is direct-mapped architecture to save the frequent used data in its blocks. 

Each block has additional bits represent the block state and indicate if the block data is valid or 

not. The tag array contains an address information, which are required to identify whether the 
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data in the cache blocks corresponds the requested data. The comparator part is used to 

examine the address tag field with the associated tag bits in the cache. The cache controller is 

used to check the comparator results and the block state bits value, generate the hit/miss 

signal, and serve the request from the cache blocks or from the lower memory hierarchies.  

3.2 Cache Coherence Protocol 
The selected cache coherence protocol to be applied on the proposed cache system is the 

MESI [4], which is illustrated in figure 2 and the explanation of the abbreviation used in MESI 

state diagram are listed in table 1. Since there is no communicate between the L1 caches via 

the shared bus, the coherence protocol must be applied on the L2 caches which are in touch 

with the shared bus. L1 cache takes the required data the block state from L2 cache [5].  

 
Figure(2):MESI state transition diagram 

 

Tabel 1: The explanation of the abbreviation used in MESI state diagram 

Abbreviation Description 

RH Read Hit in local cache 

RM Read Miss in local cache 

WH Write Hit in local cache 

WM Write Miss in local cache 

SBR Snoop Bus Read from remote cache 

SBI Snoop Bus Invalidate from remote cache 

SS Shared signal on the bus 

WB Write back modified (dirty) data 

BI Send invalidate signal to all remote caches 
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3.3 Write Policies and Hit-Miss Actions 
3.3.1 First-Level Cache 

 Write Policy: The write policy used in L1 cache is write-through, where writes always 

update both the cache and the lower level of the hierarchy (either another cache level or main 

memory) at the same time. Using write-through policy insures that the data is always 

consistent between cache levels. 

 Hit State: L1 cache controller monitors every request from the processor. When there is a 

 request (Read/Write), the comparator examines the address, the cache controller checks the  

comparator results to generate hit or miss signal and serve the request. According to the 

MESI protocol, hit occurs in one of the following states: 

 For read request: when the tags are equal and the block state is S, E, or M. Then the 

requested data is placed on the data bus.  

 For write request: when the tags are equal and the block state is E or M. Then the data on the 

data bus is written to the corresponding cache block, the block state is updated to M if it was E, 

and the Writethrough signal is asserted to write the same data to L2 cache at the same clock. 

 Miss State: When there is no hit, miss occurs and the Inhibit signal in figure 1 is asserted 

to freeze the processor datapath during the miss manipulation. If the L1 block has a dirty 

data belongs to other address, the cache controller asserts the EndInclusion signal and sends 

the dirty block address to L2 to inform it that this block will not be exist in L1. Then the 

cache controller asserts the DataReq signal and sends the requested data address to L2 cache. 

When the requested data is ready, L1 cache puts it with its state in the corresponding block 

and asserts the Aknow signal.  

3.3.2 Second-Level Cache 

 Write Policy 

 The write policy used in L2 cache is write-back, which handles writes by updating values 

only to the block in the cache, the modified block is writing to the lower level of the 

hierarchy (the main memory) in two states. First, when it is replaced. Second, when it is 

invalidated by another processor. Using write-back policy is used to reduce the bus traffic 

and thus allows more processors on a single bus. During the write process, a write-back 

buffer is used to allow the processor to continue as soon as possible on a cache miss that 

causes a write-back. It is better to delay the write-back and instead first service the miss that 

caused it [4]. Moreover, a cache to cache transfer is supported in the proposed architecture in 

order to minimize the miss latency. 

Hit State :L2 cache controller monitors every request from the L1 cache and from the bus 

side. When there is a request from L1 cache (Writethrough/EndInclusion), the request is 

served immediately since such requests cannot be happened if the data block does not exist 
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in L2 cache. When L1 cache request is DataReq, L2 cache first comparator examines the 

incoming address tag field with the associated tag bits in the cache. The cache controller 

checks the comparator results and the state bits value to generate the hit/miss signal and 

serve the request. Hit occurs in one of the following states: 

 The request is done to perform a read process in L1: when the tags are equal and the 

block state is S, E, or M. Then the requested data is placed on the intermediate data bus.  

 The request is done to perform a write process in L1: when the tags are equal and the  

block state is E or M. Then the requested data is placed on the intermediate data bus.  

Miss State 
When miss occurs, five steps are performed. First, asserting BusReq signal. Second, waiting for bus 

Grant. Third, putting address and command on the bus. Fourth, waiting for one of the acknowledgment 

signals (CmdReceive, MDataRdy, and StrRec). Finally, transferring the data between the shared bus, L2, 

and L1 at the same clock to reduce the miss penalty. Table 2 summarizes the issued commands and the 

block states when there is L2 cache request according to MESI cache protocol. 

Tabel 2: The command and the block states values according to L2 cache request and MESI protocol 

L2 cache Request 
Cache Command 

(Cmd) 
Bus Acknowledgment Signal Block State 

Invalidate other cache copies 011 CmdReceive M 

Read for exclusive 010 
CmdReceive & MDataRdy M 

CmdReceive & StrRec M 

Read for shared 001 
CmdReceive & MDataRdy E 

CmdReceive & StrRec S 

Write back 111 - - 

Release the bus 000 - - 

 

 Snooping Actions 
Since the cache coherence protocol is applied in L2 cache because of its contact with the shared 

snoopy bus, L2 cache controller monitors (snoop) every transaction on the shared bus. The second 

comparator checks if the bus transaction belongs to one of its contents. Then the cache controller takes 

the comparator results and checks the block state bits to decide which action must be applied. Table 3 

summarize the snooping actions according to the bus transaction and the block state.   
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Tabel 3: Snooping actions according to the bus transaction and the block state 

Bus transaction Current 

block state 
Snooper action 

New 

block state Request  Snooped Cmd 

Read for 

exclusive 
010 

S or E 
 Assert DataAvailable signal to supply 

the request with the required data.  
I 

M  Assert WBRequest signal to supply the 

request with the required data and write 

the dirty data to the main memory, too.  

I 

Read for shared 001 

M S 

E  Assert DataAvailable signal to supply 

the request with the required data.  

S 

S S 

Invalidate other 

cache copies 
011 S - I 

The DataAvailable/WBRequest signals have the benefit of reducing the miss latency time. It 

informs the bus arbitration that the cache has an up-to-date (S or E / M) data, and it can 

supply the request with it. When there are many cache on different processors assert this 

signal, bus arbitration will choose one of them to supply the data by asserting StrSend signal 

to the chosen processor and StrRec with CmdReceive signals to the requester processor, this 

action is better than bring the requested data from the main memory , which may take more 

time. Also, WBRequest informs the bus arbitration to write the data to the main memory 

through the write-back buffer. 

If the requested data is not exist in other caches blocks, the request will be supplied from the 

main memory. The bus arbitration will read the requested data and asserts MDataRdy with 

CmdReceive signals to the requester processor when the memory data is ready on the bus. 

4. The Proposed CMP With Multilevel Cache System Implementation  

To validate the proposed multilevel cache system, a CMP with four pipelining MIPS processors is built. 

Each processor has two private levels of data cache as shown in figure 3. A shared bus connects the 

whole system components with each other and with the off-chip main memory. The management of the 

shared bus is the responsibility of a central bus arbitration unit. 
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Figure(3): CMP system’s block diagram 
The CMP with the proposed multilevel cache system is implemented using VHDL language 

on Altera CycloneII (EP2C35F672C6) FPGA. Moreover, many scenarios of multilevel cache 

system with different write policies and a single level cache system have been designed and 

implemented. Figure 4 shows the top level Register Transfer Level (RTL) synthesis for the 

proposed cache system. 

 
Figure(4): Proposed cache system top-level RTL synthesis 
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5. Result and discussion 
This section compares between the scenarios that are implemented to show the appropriate 

architecture for the multilevel cache system. These scenarios are: 

 Cache system with write-back L1 cache and write-back L2 cache. 

 Cache system with write-through (via buffer) L1 cache and write-back L2 cache. 
 The proposed cache system with write-through (without buffer) L1 cache and write-back L2 cache. 

 Cache system with only L1 cache. 

The results are obtained from a VHDL simulation tool from Mentor Graphics Company, 

which is ModelSim. ModelSim has an ability to illustrate the simulation results as waveform 

which is an easy way to recognize the required results. 

The comparison factors are the miss rate, the miss latency (penalty) and the correct behavior 

of the system. Many tests, such as read/write sequence of data from the main memory and 

other processors’ cache system, read and modify two blocks that are mapped to the same 

cache block from the main memory, have been applied on the four scenarios to verify them. 

Table 4, summarizes the implemented cache system test’s result. The simulation results 

involve the required time transferring data through the bus. From the results, the proposed 

cache system improves the latency by 10% compare to the first and the second scenario. The 

fourth scenario is better than the other scenarios. This result is logically correct since the 

fourth scenario has only one level of cache. However, the fourth scenario suffers from high 

miss rate, which is solved by the second level of cache on the other scenarios. The required 

time to complete the write process to both levels is improved in the proposed system by 50% 

compare to the first scenario and by 66% compare to the second scenario. 
Tabel 4: Cache system test’s result 

                                              Cache System  

                                               Architecture 
 
 

 

Comparison Factor 

Multilevel cache 
Single 

level cache First 

Scenario 

Second 

Scenario 

The proposed 

Scenario  

Miss Rate Low Low Low High 

Miss Latency  
(in clock cycle) 

Main Memory 10 10 9 6 

Other cache system 9 9 8 5 

Lower Cache Hierarchy (L2) 3 3 3 - 

Complete a write process from L1 to L2 
2  
on 

replacement 
3 1 - 

Correct Behaviour x x √ √ 
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Test results show that when write-back policy is used between L1 and L2 cache, the data 

consistency cannot be insured between all processors’ cache systems. For example, suppose 

that a requested data brought to the cache system from the main memory. This data placed in 

L2 and L1 caches with (E) states. Then if the processor needs to modify that data, the new 

data will be modified only in L1 cache and the corresponding block state will be modified to 

(M) state in L1 cache, too. When other processor requests the same address, L2 controller in 

the owned processor will snoop that request. Then it will change its block state to (S) state 

and supply the request with a false data since the up-to-date data exists in L1 cache.  

In addition, using write-through policy with buffer may cause a conflict between write-

through address and the data request address in some cases, such as the following worst case 

example. Suppose that the memory blocks with addresses 255, 127 which are mapped to the 

same L1 cache block. In the beginning, both blocks are not exist in the processor’s cache 

system. When the processor request address 255 to perform a write instruction. The request 

is done and the data is placed in L1 and L2 with (E) or (M) states according to MESI 

protocol. Then the new data write process is performed to L1 cache and the write-through 

buffer. During write-through process, written data address is sent to L2 cache to perform the 
write process. If the processor request address 127, that address will be sent to L2 cache because of 

the missing station in L1 cache. As long as write-through is not complete, the write-through address 

conflicts with the data request address. This confliction causes an ambiguity in L2 cache which may 

provide L1 cache with a false data.  

Solving these problems, by using more checking circuits or splitting the address bus, can reduce the 

overall performance through increasing the miss penalty, the design complexity, and the overall chip area.   

Other scenarios’ problems are solved in the proposed scenario by modifying the write techniques as 

described in section 3. The simulation results show that the same cases are performed on the proposed 

system without any confusion. The proposed cache system write the new data to the both levels in the 

same clock cycle. Moreover, writing the new data to L2 cache is done before writing it to L1 cache by 

half of clock cycle. That action makes the new data available to others cache system immediately. 

Figure 5 depicts the simulation waveform for the proposed cache system with the worst case example. 
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Figure(5): Simulation waveform for the proposed cache system 

6. Conclusion and Future Work 
In this paper, a CMP with multilevel cache system is designed and implemented using VHDL and 

FPGA. Using multilevel cache improves the overall performance of CMP. The two-Level direct-

mapped data cache with a snoopy MESI cache coherency protocol is designed and implemented for 

each processor. The simulation and implementation results show that when the write-through policy 

without buffer in L1 cache is combined with the write-back policy in L2 cache, is the best combination 

to get the benefits of multilevel cache. Actually, this combination improves the miss latency by at least 

10% compared to other architecture. 

This paper can be extended by examining the effects of using more flexible placement techniques 

such as the set-associative to reduce the cache miss.  
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