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Abstract— In this paper, we investigate the
decomposition of Cartan's third curvature tensor Rjy, in the

framework of generalized R™-nth recurrent Finsler spaces.
We examine three distinct decompositions of the curvature
tensor and analyze the resulting equations under covariant
derivatives of the decomposed tensor fields. The
decompositions are expressed in terms of independent tensor
fields, and we explore the recurrence properties of the
resulting decomposition tensors. We show that under certain
conditions, these decomposition tensors exhibit generalized
nth-recurrence  properties, which are crucial for
understanding the geometric behavior of these tensors in
Finsler geometry. The results provide a deeper understanding
of the curvature properties in higher-dimensional recurrent
Finsler spaces, with implications for both theoretical and
applied geometry.

Keywords— Finsler Manifold, Generalized Recurrent
Tensor Field, Decomposition.

I. INTRODUCTION

The study of curvature tensors in differential geometry is vital
for understanding the structure of various geometric spaces,
particularly Finsler spaces. Finsler spaces, which generalize
Riemannian manifolds, provide a natural framework for
examining various curvature properties. Cartan's third
curvature tensor, denoted as R}'kh , plays a crucial role in
describing the geometry of such spaces. In this paper, we
explore the decomposition of this curvature tensor in the
context of generalized R"™ -nth recurrent Finsler spaces.
Specifically, we discuss how the curvature tensor can be
decomposed into various forms, and we investigate the
behavior of these decompositions under certain conditions.
Through these decompositions, we derive recurrence
properties of the corresponding tensors, which are essential for
understanding the structure of these spaces in higher-
dimensional settings.

Tensor fields play a fundamental role in differential
geometry, serving as essential tools for describing geometric
objects and their properties. In particular, recurrent tensor
fields, characterized by a covariant derivative that is
proportional to the tensor itself, have been extensively studied
in the context of Riemannian and pseudo-Riemannian
manifolds. However, the study of recurrent tensor fields in
Finsler manifolds, which are more general geometric
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structures than Riemannian manifolds, remains a relatively
unexplored area.

In this paper, we focus on a specific class of tensor fields
known as generalized recurrent tensor fields of R-nth order.
These tensor fields exhibit a more complex recurrence relation
compared to standard recurrent tensor fields. Our primary
objective is to investigate the decomposition properties of
these tensor fields within the framework of Finsler geometry.
By decomposing a generalized recurrent tensor field into
simpler components, we aim to gain deeper insights into its
geometric significance and to establish a more comprehensive
theory of tensor fields in Finsler manifolds. Finsler manifolds
are a generalization of Riemannian manifolds where the
metric tensor depends not only on the point of the manifold
but also on the direction of the tangent vector at that point.
This allows for a more general study of geometry and physics
in spaces with non-constant curvature. Generalized recurrent
tensor fields are tensor fields that satisfy a certain recurrence
relation. This relation can be used to study the geometry and
dynamics of Finsler manifolds.

In this paper, we will discuss the decomposition of
generalized recurrent tensor fields of -nth order in Finsler
manifolds. We will obtain different tensors which satisfy the
recurrence property under the decomposition. Also, we will
prove the decomposition for different tensors are non-
vanishing. As an illustration of the applicability of the
obtained results, we will finish this work with some illustrative
examples. This paper is organized as follows. In Section 2, we
will introduce the necessary preliminaries. In Section 3, we
will discuss the decomposition of generalized recurrent tensor
fields of nth order. In Section 4, we will give some illustrative
examples. Finally, in Section 5, we will give some concluding
remarks. The study of curvature tensors in Finsler geometry
has been an area of significant research in recent years, as it
provides deep insights into the structural properties of Finsler
spaces. Various forms of curvature decomposition have been
explored to better understand the geometrical behavior of
these spaces [1] introduced certain types of generalized
recurrent Finsler spaces, contributing to the development of
the field. Subsequent works, such as those by [2, 3, 4, 5, 6, 7],
extended the concept of generalized Finsler spaces by
analyzing special curvature tensors and their recurrence
properties, which are pivotal in understanding higher-order
generalizations of Finsler structures. In addition, the
decomposition of curvature tensors, a technique pioneered by
researchers like [8, 9, 10] has been used to examine the impact
of covariant derivatives on the structure of Finsler spaces.
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These contributions provide a comprehensive framework for
studying the complex interactions between curvature tensors
and space recurrence in various Finsler settings. Moreover,
works by [11, 12] highlight the significance of these
decompositions for exploring advanced geometrical structures
in both theoretical and applied contexts. This paper builds
upon these prior developments to further investigate the
decompositions of Cartan's third curvature tensor in
generalized  Finsler  spaces, thereby enriching the
understanding of curvature properties in higher-dimensional
recurrent Finsler spaces.

Il. PRELIMINARIES

E. Cartan in his second postulate, represented the variation of
an arbitrary vector field X under the infinitesimal change of
its line element (x,y) to (x +dx,y + dy) by means of
covariant (absolute) differential given by

(2.1)
(2.2)

DX'=dX'+ X/ ( C} dy* + T, dx* ), where
8) T = Vjx — CouG" + 9" Cjiem GI!

b) G_i = ; vhyly* and ¢ Gl =06
The function G! is positively homogeneous of degree two in
the directional argument.

Eliminating dy* from (2.1) and in terms of the absolute
differential of [, E. Cartan deduced

(2.3) DX'=F X[, D I + X[, dx* +y* (0, X') =,
where,
(2.4) Q) X, = 0p X'+ X7 CLy,

b)X\, = 0 X'+ X" T — (0, X' ) TiF ¥°, and
¢) Lk=Th%—ChrIRy*

The function T;: defined by (2.4c) is connection parameter of
E. Cartan, this is symmetric in the lower indices r and k
and positively homogeneous of degree zero in the directional
argument and satisfies:

(2.5) gin Tk = Tlnk

The equations (2.4a) and (2.4b) give two processes of

covariant differentiation called v-covariant differentiation
(Cartan's first kind covariant differentiation) and h-covariant

differentiation  (Cartan's second  kind  covariant
differentiation), respectively. So  Xi|, and X are
respectively v-covariant derivative an d h -covariant

derivative of the vector field X!. The metric tensor gij and
the associate metric tensor g% are related by

1 if

gl =6k = i=k
9i; 97 =6 {0 if

(26) i+k.
The quantities g;; , g” and &/ are satisfies

(2.7) and

a) gij g7y =n b) 6jigik =Jjk -

The vector y; satisfies relation
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(2.8) iyt =F?
The vectors y; z_:md 5L al_so satisfy the following relations
(2.9) a) & y< =y

b) & g/ = g* and

©) 9ijy =i

The metric tensor g;; and the associate metric tensor g/ are
covariant constant with respect to both processes

(210)  @gy,=0 ad  b) g) =0

The vectors y', y; are vanish under h-covariant
differentiation

(2.11) a)y;m =0  and b) y. =0

The h-curvature tensor
tensor), is defined by

R}kh (Cartan’s third curvature

(2.12) Rin = 0, Tl + (0, T ) G + Cl (04 G —
Gt G ) + Tl T = [0, Tt + (0, T3 ) G +

Crn(0n G — GI Gi ) + Tl T

The h-curvature tensor R}kh is positively homogeneous of
degree —1 in the directional argument and skew-symmetric
in the last two lower indices h and k , i.e.

(2.13) Rin =

- R}hk

Definition 2.1: Let the current coordinates in the tangent
space at the point x, to x*. Then the indicatrix I,_, is a
hypersurface defined by [5] F(xy,x) =1 or by the
parametric defined by x‘ = x'(u%),a =1,2,..,n — 1.

Definition 2.2: The projection of any tensor T]-i on indicatrix
I,_4 given by [5]

(214)  pT} =Tghih?,
(2.15) hi = 8L -1, .
Let us consider a Finsler space F, whose Cartan's third
curvature tensor R}'kh satisfies the following condition

where

(2.16) R!

jkh|mq|mz|.../mp i ]
i i
Hmlmz...mn( 6h Ijk — 6k Gjn )

— i
- Amlmz...mn Rjkh +

where R}'kh #0 and |my|m,|..|m, are h-covariant
differentiation (Cartan's second kind covariant differential
operator) with respect to x™ to nth order, A,,,m, .m, and
Hmym,..m, arerecurrence tensors fields.

Definition 2.3: A Finsler space F, whose Cartan's third
curvature tensor R}',m satisfying the condition (2.16), where
Anymy.m, AN U o om, a@re non-null covariant tensors
fields, is called a generalized R"-nth order space and the
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tensor will be called generalized h-nth tensor. We shall
denote this space briefly by GR"-n*"RE, .

I11. DECOMPOSITION OF CURVATURE TENSOR FIELD R]i-kh
In this paper, we will discuss the decomposition of Cartan's
third Curvature tensor R}kh in generalized R™-nth recurrent
Finsler Space. We consider the decomposition of curvature
tensor field R}kh in the following way [7]

1) Ry =U"Vjpn ,

(32 R, =UgVj, and

33)  Rjn=UVin -
Further considering the decomposition of the Curvature
tensor R}, in the form [6]

(3.4) R}kh = Vji(bklph .

Let us consider Cartan's third Curvature tensor R}'kh is
decomposable as (3.1), where Vj;, is non-zero covariant

tensor field which called decomposition tensor field and U* is
independent of x™ to nth order.

Taking h-covariant derivative of (3.1) with respect to x™ to
nth order, assume that U’ is constant we get:

i — q7i1.
Rjknimyimyimsl..imy = U Viknim, myims|..imp -

By using the condition (2.16) in above equation and in view
of (3.1), we get

(3.5) UiV]"khlmllm'zlm;,»l...lmn = Amlmzmg...mnui V}'kh +
ﬂmlmzmg... mn( 5;1 gjk_ 612 gjh) .
Since U' is independent of x™ to nth order, equation (3.5)
can be written as

(ULV]'kh.)|m1|m2|f"3|---|mn = Am1m2m3---mn(ulvjkh) +
#m1m2m3 My (5;1 Ijk— 5;( gjh)-

Therefore, the proof of theorem is completed, we can say,
Theorem 3.1. In GR" — ntRF, under the decomposition
(3.1) and if U' is constant, then the decomposition tensor
(Ut Vi) satisfies the generalized nth-recurrence property.
In view of equation (3.5), and where @y mym;.myi =

#m1m2m3...mn/Ul we get:
(3.6) _ V}khlml_lmzlm3|...|mn = Am1m2m3...mnv}'kh +
X myms.. mni( 6;1 Gjk~ 612 gjh)'
Above equation can be written as
(3.7 V}khlmllmzlm3|...|mn = Am1m2m3...mnv}'kh +
(Q)m1m2m3...mnhjk

_®m1m2m3...mnkjh) ’ ]
where ®m1m2m3...mnhjk = am1m2m3...mni6ill ik and
¢m1m2m3...mnkjh = am1m2m3...mni6i¢ Gjh -
Now, if the tensor field @ ;myms. monjx =
—Dm,myms..mykjn » then above equation can be written as
(3.8) Viknimylmsms|..imy = Amimams..my Vikn +

2®m1m2m3 ..myhjk *
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Corollary 3.1. In GR® — n*"RF, under the decomposition
(3.1), the decomposition tensor (Vjxy) is non-vanishing .
Let us consider Cartan's third Curvature tensor R}kh is
decomposable as (3.2), where Vj’}1 is decomposition tensor
field and U, is independent of x™ to nth order.
Taking h-covariant derivative of (3.2) with respect to x™ to
nth order, assume that U, is covariant constant we get

R =U,V}

jkh|mq|ma|ms|...my jhlmq|ma|ms|...|my -

By using the condition (2.16) in above equation and in view
of (3.2), we get

(3.9) U Vi

Jhlmq|ma|ms|...my

Umymyms.. mn( 6;1 Gjik~ 6;( gjh)'

— i
- Am1m2m3 .My Uk th +

Since Uy, is independent of x™ to nth order, equation (3.9)
can be written as

(3-10) (Uklljgl)lmllm?|m3|...|mn
.umlmzmg... mn(6;1 gjk_ 6;( gjh)

= Am1m2m3 .My (Ux V]lh) +

So, the proof of theorem is completed, we can say,
Theorem 3.2. In GR" — n"RF, under the decomposition
(3.2) and if Uy is covariant constant, then the decomposition
tensor (Uijih) satisfies the generalized nth-recurrence
property.

In view of equation (3.9), and where w,"nlmzmz___mn =

.umlmzmg mn/Ukwe get

(3.11) ‘ I/j;|m1|m2|m3|___|mn = Ainymyms..mnVin +
Wy myms...mn ( Ok Gjk= Ok Gjn)-

Above equation can be written as

(3.12) v

.i = A .i =+
Jjhlmy|my|ms|...Jmy mimyms..mp ¥ jh

(grlnlmzm}..‘mnhj - ernlmzm3...mnjh) ) )
W_here grlnlmzm3...mnhj = wrlfllmzm—j...mné‘li Ijk and
ernlmzm3...mnjh ) )
= Wy myms...mn Ok Gjn - f the tensor field 65, 1 oy iS
symmetric in last two indicator, then the equation (3.12) can
be written as

(3.13) |4 A

nlmalmaims|..imn = Amymoms..mg Vi -
Transvecting (3.13) by y/ using (2.11b), we get
(3.14)
Viy’ .

Transvecting (3.10) by y* using (2.11b), (2.9a) and (2.9¢),
we get

i — i i
Vh|m1|m2|m3|...|mn - Am1m2m3...mth , Where Vh -

(315) (Ul/}'l;l)lmllm2|m3|...|mn

.umlmzmg...mn( 6Ii1 Yi= yigfh ) '
where U = U, y* .

= Am1m2m3 My (Uv}lh) +
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Transvecting (3.15) by y’ using (2.11b), (2.8) and (2.9c), we
get

(3.16) (Uvﬁ)|m1|m2|m3|...|mn = Am1m2m3...mn(UVfD +
Hm1m2m3_... mn(_ 6;;.F2_ inh ) '

where V, = V3 y/.

Contracting the indices i and h in (3.16) using (2.6) and (2.8),
we get:

(317) (UV)|m1|m2|m3|...|mn = ‘Am1m2m3...mn (UV) +
Hmymyms...m, (M- 1)F?, where V} = V.

If n =1, theequation (3.17) can be written as

(3.18) (UV)Imllmz |ms|..jmy = Amlmzmg,...mn(UV)

Since U is constant, above equation can be written as

(3.19) V|m1|m2|m3|...|mn = Amlmsz...mnV

Corollary 3.2. Under the decomposition (3.2), if U, is
covariant constant and U is constant, then the behavior of
decomposition tensors ]-1}1 V.UV and V are nth-recurrent.
Let us consider Cartan's third Curvature tensor R}'kh is
decomposable as (3.3), where Uji and V., are the
decomposition tensors field. Taking h-covariant derivative of
(3.3) with respect to x™ to nth order, assume that Uji is
independent of x™ , we get

i _ i
Rjknim, jmyimal.imn = Ui Vinimqimaims|..imy -

By using the condition (2.16) in above equation and in view
of (3.3), we get in above equation, we get

(3.20) Uji'thlmllr'nzlm;,»l...lmn = Amymyms..my, Ujinh +
ﬂm1m2m3... mn( 5;1 gjk_ 612 gjh)-

Since Uj" is independent of x™ to nth order, equation (3.20)
can be written as

(3.21) (Ujin.h)|m1|m?|m3|...|mn = Am1m2m3...mn(Ujinh) +
Hmimymg...my, (6;1 Gjk— 6;( gjh) .

So, the proof of theorem is completed, we can say,

Theorem 3.3. In GR" — n*"RF, under the decomposition
(3.3), the decomposition tensor (U}th) satisfies the
generalized nth-recurrence property. We can conclude that if
8% gjx = 61 gjn , then the decomposition tensors (U Vi) |
(UxVih) and (UfViy,) behave as nth-recurrent satisfy the
following conditions

(3.22)

(Ui ijh)|m1|m2|m3|...|mn = /1m1m2m3...mn(ui ijh)

(3.23) (Uk V}Lh) Imyma|ms|../my = Am1mzm3 My (Uk Vjal)
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B24) UV imaimylms)..imy =
respectively.

Am1m2m3 My (Uji th) '

Example: In order to illustrate the effectiveness of the
proposed findings, we consider example of the nth-recurrence
properties.

The decomposition tensor (Ui ijh) is nth-recurrent if and
only if it satisfies

(Ui ijh)|m1|m2|m3|...|mn = Am1mzm3---mn(ui kah)

Firstly, since the decomposition tensor (U Vi) is nth-
recurrent, the condition (3.22) is satisfied. In view of (2.14),
the decomposition tensor (U* Vj;,) on indicatrix given by

(3.25) p. (UWjin) = UVpeqhh? RERT .

By taking h-covariant derivative of (3.25) with respect to x™
to nth order, using equation (3.22) and the fact that hj is
constant in above equation, we get

[P- (U Vi)l imaimfms ..mp, =
Amlmzmg...mn UaVbcdhzlh]l')hthdL .

Using (3.25) in above equation, we get

(3.26) [p. (Ui‘ V}'kh)]lmllmzlm—jl...lmn =
Amlmzmg...mn [p- (Ulekh)]

Above equation means the projection on indicatrix for the
decomposition tensor (U'Vj,,) behaves as nth-recurrent.
Secondly, let the projection on indicatrix for the
decomposition tensor (U'Vj,,) is nth-recurrent, that is, it
satisfies equation (3.26). By using (3.25) in equation (3.26),
we get

(UaVbcdhilhjl')hihg)|m1|mz|m3|---|mn =
Amlmzmg...mnl']aVbcdhah})hihg .
Since hj = &; — I'l; , above equation we can written as
[(UVjn) = (UVjra) 1l = (UVjen) 1l +
(UWea) 1, — (U V1P + (U V)1 G140, +
U VeI L1Y, = (U Ve PP L1, — (U )1, +
(UYW)%, + (UVen) 1 1150, —
(Ui )V LD, 4 (U V)L 1P L —
(U V) 10100, — (U UL 1P LY, +
(UaVbcd)lilalbljlclkldlh]|m1|m2|m3|...|mn =
Amlmzmg...mn [(Uiv}'kh) - (Uiijd)ldlh

—(U W)l + (U)oL 1%, —
WUVl + (U Vi) 11140,

+U VeI LI L, — (U Ve 1P L1010, —
UVl + (UVa ) U110,

+F(U W)U, 10, — (UVeg) U1 1C L 190, +
(Ui 1P

https://journals.ust.edu/index.php/IST
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_(Uakad)lilalbljldlh - (UaVbCh)lilalbljlclk +
(UVpea) I L PG00 ).
From, 1 =2 and I, =2, if (UVpe)Ya = (U Vpe)y" =
(U*Vpea)y© = (UV,0q)y? = 0, then above equation can be
written as

(Ul ijh)|m1|m2|m3|...|mn = Am1m2m3...mn(ul ijh)'
Above equation means the decomposition tensor (Uiijh)
behaves as nth-recurrent. Also, we can use same technique
for showing the decomposition tensors (U, V;},) and (U; V)
are nth-recurrent if and only if the projection on indicatrix for
them behave as nth-recurrent. We consider the decomposition
of curvature tensor field R}, in the following form (3.4),
where Vji is non-zero tensor field, @, and i, are covariant
constant. Taking h-covariant derivative of (3.4) with respect
to x™ to nth order, we get

Ritehimy msms]..imn = Viimstmaims]...imy OkW¥n -
By using the condition (2.16) in above equation and in view
of (3.4), we get

(3.27) V]'lim1|r,"2|m3|---|'mn®klph = Amlmzmz,---mnvfi@klph +
“m1m2m3... mn( 6}2 gjk_ 61L< gjh)'

Since @, and y, are independent of x™ to nth order,
equation (3.27) can be writtenas

(3.28) . (V}'lqjkwh)'lmllmzlmﬂ...lmn =
Am1m2m3...mn (le(z)klph) + .umlmzm3...mn(6rlz Ijk~ 6;( gjh)

In conclusion the proof of theorem is completed, we can
determine,

Theorem 3.4. In GR™®-n**RF, under the decomposition (3.4)
and if @, and i, are covariant constant, then the
decomposition tensor (Vji(Z)kl/)h) satisfies the generalized nth-
recurrence property.

In view of equation (3.27), and where ), m,. m, =

#m1m2m3... mn/wklph y We get
(3-29) jl|m1|mg|m3|...|mn
afn};mzm3 mn( 5;1 Gjk~ 6;( gjh)'

— i
= lm1m2m3 ...man +

Above equation can be writer as

vi+

i —
(330) j|m1|m2|m$|...|mn - lm1m2m3...mn Jj

(CE — 6}

myimpms.. My j mimpms... mnj)l

kh

i i
where 6 mymams... mpOn Gjik -

=
mymyms... myj

From (3.30), we get

(3.31) V}'l|m1|m2|m3|---|mn = Am1m2m3---mnvjl :

Contracting the indices i and j in (3.28) using (2.7b), we get

https://doi.org/10.20428/jst.v30i2.2664
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(3.32) (Vwkwh)|m1|m2|m3|...|mn =
.umlmzmg...mn(ghk_gkh) )

/‘lmlmzm3 WMy (Vq)klph) +

where V} =V

Since gy, is symmetric, we get
(3.33) (V(Dkl/)h)lmllm2|m3|...|mn = Am1m2m3...mn V@)
Since @, and ¥, are independent of x™ to nth order, above
equation can be written:

(3.34) V|m1|m2|m3|---|mn = Am1mzm3---mnV

In conclusion the proof of theorem is completed, we can
determine the corollary,

Corollary 3.3. Under the decomposition (3.4), if @, and ¥,
are covariant constant, then the behavior of decomposition
tensors Vji , V@, and V are nth-recurrent.

IV. CONCLUSIONS
In this research, we have conducted a comprehensive study of
generalized recurrent tensor fields of R-nth order in Finsler
manifolds. By employing advanced tensor calculus and
differential geometry techniques, we have successfully
achieved the following:

e Decomposition theorems: We have derived a set of
novel decomposition theorems that characterize the
conditions under which a generalized recurrent
tensor field can be expressed as a sum of simpler
tensor fields. These theorems provide a deeper
understanding of the structure and properties of
these tensor fields.

e Geometric insights: Our analysis has revealed new
insights into the geometric properties of Finsler
manifolds. Specifically, we have shown how the
decomposition of generalized recurrent tensor fields
can be used to explore the curvature and torsion of
these manifolds.

e Potential applications: The results obtained in this
study have the potential to find applications in
various fields, including physics and engineering.
For instance, our findings could be useful in the
development of new theories of gravity or in the
study of materials with complex geometric
structures.

V. RECOMMENDATIONS

Based on the findings of this research, we recommend the

following avenues for future investigation:

e Extension to other geometric structures: It would be
interesting to explore the decomposition of generalized
recurrent tensor fields in other geometric structures, such
as Finslerian-Lagrangian geometries or generalized
Finsler geometries.

e Applications to specific physical theories: The results
of this study could be applied to specific physical
theories, such as general relativity or string theory.
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Numerical simulations: Numerical simulations could
be used to visualize and analyze the behavior of
generalized recurrent tensor fields in various scenarios.
Development of new invariants: The decomposition
theorems obtained in this study could be used to develop
new invariants for characterizing the geometry of Finsler
manifolds.
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