DECOMPOSITION OF GENERALIZED RECURRENT TENSOR FIELDS OF R^H-NTH ORDER IN FINSLER MANIFOLDS

Adel Mohammed Ali Al-Qashbari (1,2) Aminah Omar Awadh Mubark (3)

Received: 18/12/2024 Revised: 19/12/2024 Accepted: 13/01/2025

© 2025 University of Science and Technology, Aden, Yemen. This article can be distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

© 2025 جامعة العلوم والتكنولوجيا ، المركز الرئيس عدن ، اليمن. يمكن إعادة استخدام المائدة المنشورة حسب رخصة مؤسسة المشاع الإبداعي شريطة الاستشهاد بالمؤلف والمجلة.

¹ Dept. of Math's., Faculty of Educ. Aden, Univ. of Aden, Aden, Yemen

² Dept. of Med. Eng., Faculty of the Engineering and Computers, Univ. of Science & Technology, Aden, Yemen

³ Dept. of Math's., Faculty of Educ.-Abyan, Univ. of Abyan, Abyan, Yemen

^{*} Corresponding Author's Email: adel.math.edu@aden.net

Decomposition of Generalized Recurrent Tensor Fields of R^h-nth Order in Finsler Manifolds

Adel Mohammed Ali Al-Qashbari

Dept. of Math's., Faculty of Educ. Aden,

Univ. of Aden, Aden, Yemen

adel.math.edu@aden.net

Aminah Omar Awadh Mubark

Dept. of Math's., Faculty of Education,

Abyan, University of Abyan,

Abyan, Yemen

Abstract— In this paper, we investigate the decomposition of Cartan's third curvature tensor R_{ikh}^{i} in the framework of generalized R^h -nth recurrent Finsler spaces. We examine three distinct decompositions of the curvature tensor and analyze the resulting equations under covariant derivatives of the decomposed tensor fields. The decompositions are expressed in terms of independent tensor fields, and we explore the recurrence properties of the resulting decomposition tensors. We show that under certain conditions, these decomposition tensors exhibit generalized nth-recurrence properties, which are crucial understanding the geometric behavior of these tensors in Finsler geometry. The results provide a deeper understanding of the curvature properties in higher-dimensional recurrent Finsler spaces, with implications for both theoretical and applied geometry.

Keywords— Finsler Manifold, Generalized Recurrent Tensor Field, Decomposition.

I. INTRODUCTION

The study of curvature tensors in differential geometry is vital for understanding the structure of various geometric spaces, particularly Finsler spaces. Finsler spaces, which generalize Riemannian manifolds, provide a natural framework for examining various curvature properties. Cartan's third curvature tensor, denoted as R_{jkh}^{i} , plays a crucial role in describing the geometry of such spaces. In this paper, we explore the decomposition of this curvature tensor in the context of generalized R^h -nth recurrent Finsler spaces. Specifically, we discuss how the curvature tensor can be decomposed into various forms, and we investigate the behavior of these decompositions under certain conditions. Through these decompositions, we derive recurrence properties of the corresponding tensors, which are essential for understanding the structure of these spaces in higherdimensional settings.

Tensor fields play a fundamental role in differential geometry, serving as essential tools for describing geometric objects and their properties. In particular, recurrent tensor fields, characterized by a covariant derivative that is proportional to the tensor itself, have been extensively studied in the context of Riemannian and pseudo-Riemannian manifolds. However, the study of recurrent tensor fields in Finsler manifolds, which are more general geometric

structures than Riemannian manifolds, remains a relatively unexplored area.

In this paper, we focus on a specific class of tensor fields known as generalized recurrent tensor fields of R-nth order. These tensor fields exhibit a more complex recurrence relation compared to standard recurrent tensor fields. Our primary objective is to investigate the decomposition properties of these tensor fields within the framework of Finsler geometry. By decomposing a generalized recurrent tensor field into simpler components, we aim to gain deeper insights into its geometric significance and to establish a more comprehensive theory of tensor fields in Finsler manifolds. Finsler manifolds are a generalization of Riemannian manifolds where the metric tensor depends not only on the point of the manifold but also on the direction of the tangent vector at that point. This allows for a more general study of geometry and physics in spaces with non-constant curvature. Generalized recurrent tensor fields are tensor fields that satisfy a certain recurrence relation. This relation can be used to study the geometry and dynamics of Finsler manifolds.

In this paper, we will discuss the decomposition of generalized recurrent tensor fields of -nth order in Finsler manifolds. We will obtain different tensors which satisfy the recurrence property under the decomposition. Also, we will prove the decomposition for different tensors are nonvanishing. As an illustration of the applicability of the obtained results, we will finish this work with some illustrative examples. This paper is organized as follows. In Section 2, we will introduce the necessary preliminaries. In Section 3, we will discuss the decomposition of generalized recurrent tensor fields of nth order. In Section 4, we will give some illustrative examples. Finally, in Section 5, we will give some concluding remarks. The study of curvature tensors in Finsler geometry has been an area of significant research in recent years, as it provides deep insights into the structural properties of Finsler spaces. Various forms of curvature decomposition have been explored to better understand the geometrical behavior of these spaces [1] introduced certain types of generalized recurrent Finsler spaces, contributing to the development of the field. Subsequent works, such as those by [2, 3, 4, 5, 6, 7], extended the concept of generalized Finsler spaces by analyzing special curvature tensors and their recurrence properties, which are pivotal in understanding higher-order generalizations of Finsler structures. In addition, the decomposition of curvature tensors, a technique pioneered by researchers like [8, 9, 10] has been used to examine the impact of covariant derivatives on the structure of Finsler spaces.

These contributions provide a comprehensive framework for studying the complex interactions between curvature tensors and space recurrence in various Finsler settings. Moreover, works by [11, 12] highlight the significance of these decompositions for exploring advanced geometrical structures in both theoretical and applied contexts. This paper builds upon these prior developments to further investigate the decompositions of Cartan's third curvature tensor in generalized Finsler spaces, thereby enriching understanding of curvature properties in higher-dimensional recurrent Finsler spaces.

II. PRELIMINARIES

É. Cartan in his second postulate, represented the variation of an arbitrary vector field X^i under the infinitesimal change of its line element (x, y) to (x + dx, y + dy) by means of covariant (absolute) differential given by

(2.1)
$$DX^{i} = dX^{i} + X^{j} \left(C_{ik}^{i} dy^{k} + \Gamma_{ik}^{i} dx^{k} \right), \text{ where}$$

(2.2) a)
$$\Gamma_{jk}^{i} = \gamma_{jk}^{i} - C_{mk}^{i} G_{j}^{m} + g^{ih} C_{jkm} G_{h}^{m}$$

b) $G^{i} = \frac{1}{2} \gamma_{jk}^{i} y^{j} y^{k}$ and c) $G_{j}^{i} = \partial_{j} G^{i}$

The function G^i is positively homogeneous of degree two in the directional argument.

Eliminating dy^k from (2.1) and in terms of the absolute differential of l^i , É. Cartan deduced

(2.3)
$$DX^{i} = F X^{i}|_{k} D l^{k} + X^{i}_{|k} dx^{k} + y^{k} (\hat{\sigma}_{k} X^{i}) \frac{dF}{F},$$
 where,

(2.4) a)
$$X^{i}|_{k} = \dot{\partial}_{k} X^{i} + X^{r} C_{rk}^{i},$$

b) $X_{lk}^{i} = \partial_{k} X^{i} + X^{r} \Gamma_{rk}^{*i} - (\dot{\partial}_{m} X^{i}) \Gamma_{sk}^{m} y^{s}, \text{ and}$
c) $\Gamma_{rk}^{*i} = \Gamma_{rk}^{i} - C_{mr}^{i} \Gamma_{sk}^{m} y^{s}$

The function Γ_{rk}^{*l} defined by (2.4c) is connection parameter of É. Cartan, this is symmetric in the lower indices r and kand positively homogeneous of degree zero in the directional argument and satisfies:

$$(2.5) g_{ih} \Gamma_{rk}^{*i} = \Gamma_{rhk}^*$$

The equations (2.4a) and (2.4b) give two processes of covariant differentiation called v-covariant differentiation (Cartan's first kind covariant differentiation) and h-covariant differentiation (Cartan's second kind differentiation), respectively. So $X^{i}|_{k}$ and $X^{i}|_{k}$ are respectively v-covariant derivative an d h -covariant derivative of the vector field X^{i} . The metric tensor g_{ij} and the associate metric tensor g^{ij} are related by

(2.6)
$$g_{ij} g^{jk} = \delta_i^k = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases}$$

The quantities g_{ij} , g^{ij} and δ^i_i are satisfies

(2.7) a)
$$g_{ij} g^{ij} = n$$
 and b) $\delta_i^i g_{ik} = g_{ik}$.

The vector y_i satisfies relation

$$(2.8) y_i y^i = F^2$$

The vectors y_i and δ_k^i also satisfy the following relations

$$(2.9) a) \delta_k^i y^k = y^i$$

a)
$$\delta_k^i y^k = y^i$$

b) $\delta_j^i g^{jk} = g^{ik}$ and

c)
$$g_{ij} y^j = y_i$$

The metric tensor g_{ij} and the associate metric tensor g^{ij} are covariant constant with respect to both processes

(2.10) a)
$$g_{ij|m} = 0$$
 and b) $g_{im}^{ij} = 0$

The vectors y^i , y_i are vanish under h-covariant differentiation

(2.11) a)
$$y_{i|m} = 0$$
 and b) $y_{i|m}^{i} = 0$

The h-curvature tensor R_{ikh}^{i} (Cartan's third curvature tensor), is defined by

$$\begin{array}{ll} (2.12) & R^{i}_{jkh} = \dot{\partial}_{h} \; \Gamma^{*i}_{jk} + \left(\; \dot{\partial}_{l} \; \Gamma^{*i}_{jk} \; \right) \; G^{l}_{h} + C^{i}_{jm} \left(\; \dot{\partial}_{k} \; G^{m}_{h} - G^{m}_{kl} \; G^{l}_{h} \; \right) + \Gamma^{*i}_{mk} \; \Gamma^{*m}_{jh} - \left[\dot{\partial}_{k} \; \Gamma^{*i}_{jh} + \left(\; \dot{\partial}_{l} \; \Gamma^{*i}_{jh} \; \right) \; G^{l}_{k} \; + \right. \\ C^{i}_{jm} \left(\; \dot{\partial}_{h} \; G^{m}_{k} - G^{m}_{hl} \; G^{l}_{k} \; \right) + \Gamma^{*il}_{mh} \; \Gamma^{*m}_{jk} \\ \end{array}$$

The h-curvature tensor R_{ikh}^{i} is positively homogeneous of degree -1 in the directional argument and skew-symmetric in the last two lower indices h and k, i.e.

$$(2.13) R_{jkh}^i = -R_{jhk}^i$$

Definition 2.1: Let the current coordinates in the tangent space at the point x_0 to x^i . Then the indicatrix I_{n-1} is a hypersurface defined by [5] $F(x_0, x^i) = 1$ or by the parametric defined by $x^i = x^i(u^a), a = 1, 2, ..., n - 1$.

Definition 2.2: The projection of any tensor T_i^i on indicatrix I_{n-1} given by [5]

(2.14)
$$pT_i^i = T_b^a h_a^i h_i^b$$
, where

$$(2.15) h_c^i = \delta_c^i - l^i l_c .$$

Let us consider a Finsler space F_n whose Cartan's third curvature tensor R_{jkh}^{i} satisfies the following condition

(2.16)
$$R_{jkh|m_{1}|m_{2}|...|m_{n}}^{i} = \lambda_{m_{1}m_{2}...m_{n}} R_{jkh}^{i} + \mu_{m_{1}m_{2}...m_{n}} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right)$$

where $R_{jkh}^i \neq 0$ and $|m_1|m_2| \dots |m_n|$ are h-covariant differentiation (Cartan's second kind covariant differential operator) with respect to x^m to nth order, $\lambda_{m_1m_2...m_n}$ and $\mu_{m_1m_2...m_n}$ are recurrence tensors fields.

Definition 2.3: A Finsler space F_n whose Cartan's third curvature tensor R_{ikh}^{i} satisfying the condition (2.16), where $\lambda_{m_1m_2...m_n}$ and $\mu_{m_1m_2...m_n}$ are non-null covariant tensors fields, is called a generalized R^h -nth order space and the

tensor will be called generalized h-nth tensor. We shall denote this space briefly by GR^h - $n^{th}RF_n$.

III. DECOMPOSITION OF CURVATURE TENSOR FIELD R^i_{jkh} In this paper, we will discuss the decomposition of Cartan's third Curvature tensor R^i_{jkh} in generalized R^h -nth recurrent Finsler Space. We consider the decomposition of curvature tensor field R^i_{ikh} in the following way [7]

- (3.1) $R_{jkh}^i = U^i V_{jkh}$,
- $(3.2) R_{jkh}^i = U_k V_{jh}^i and$
- (3.3) $R_{jkh}^i = U_j^i V_{kh}$.

Further considering the decomposition of the Curvature tensor R^i_{jkh} in the form [6]

$$(3.4) R_{ikh}^i = V_i^i \emptyset_k \psi_h .$$

Let us consider Cartan's third Curvature tensor R^i_{jkh} is decomposable as (3.1), where V_{jkh} is non-zero covariant tensor field which called decomposition tensor field and U^i is independent of x^m to nth order.

Taking h-covariant derivative of (3.1) with respect to x^m to nth order, assume that U^i is constant we get:

$$R^{i}_{jkh|m_{1}|m_{2}|m_{3}|\dots|m_{n}} = U^{i}V_{jkh|m_{1}|m_{2}|m_{3}|\dots|m_{n}}.$$

By using the condition (2.16) in above equation and in view of (3.1), we get

(3.5)
$$U^{i}V_{jkh|m_{1}|m_{2}|m_{3}|...|m_{n}} = \lambda_{m_{1}m_{2}m_{3}...m_{n}}U^{i}V_{jkh} + \mu_{m_{1}m_{2}m_{3}...m_{n}} \left(\delta_{h}^{i}g_{jk} - \delta_{k}^{i}g_{jh}\right).$$

Since U^i is independent of x^m to nth order, equation (3.5) can be written as

$$(U^i V_{jkh})_{|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1 m_2 m_3 \dots m_n} (U^i V_{jkh}) + \mu_{m_1 m_2 m_3 \dots m_n} (\delta^i_h g_{jk} - \delta^i_k g_{jh}).$$

Therefore, the proof of theorem is completed, we can say, **Theorem 3.1.** In $GR^h - n^{th}RF$, under the decomposition (3.1) and if U^i is constant, then the decomposition tensor $(U^i V_{jkh})$ satisfies the generalized nth-recurrence property. In view of equation (3.5), and where $\alpha_{m_1m_2m_3...m_n}i = \mu_{m_1m_2m_3...m_n}/U^i$ we get:

(3.6)
$$V_{jkh|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1m_2m_3\dots m_n} V_{jkh} + \alpha_{m_1m_2m_3\dots m_ni} \left(\delta_h^i g_{jk} - \delta_k^i g_{jh} \right).$$
 Above equation can be written as

(3.7)
$$V_{jkh|m_1|m_2|m_3|...|m_n} = \lambda_{m_1m_2m_3...m_n} V_{jkh} + (\emptyset_{m_1m_2m_3...m_n} h_{jk})$$

$$-\phi_{m_1m_2m_3...m_nkjh}),$$
where $\phi_{m_1m_2m_3...m_nkjk} = \alpha_{m_1m_2m_3...m_ni}\delta_h^i g_{jk}$ and

$$\begin{aligned} & \phi_{m_1m_2m_3\dots m_nkjh} = \alpha_{m_1m_2m_3\dots m_ni} \delta_k^i \, g_{jh} \, . \\ & \text{Now, if the tensor field} \quad \phi_{m_1m_2m_3\dots m_nhjk} = \\ & -\phi_{m_1m_2m_3\dots m_nkjh} \, , \text{ then above equation can be written as} \\ & (3.8) \qquad \qquad V_{jkh|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1m_2m_3\dots m_n} V_{jkh} \, + \end{aligned}$$

 $2\emptyset_{m_1m_2m_3\dots m_nhjk}$.

Corollary 3.1. In $GR^h - n^{th}RF$, under the decomposition (3.1), the decomposition tensor (V_{ikh}) is non-vanishing.

Let us consider Cartan's third Curvature tensor R_{jkh}^i is decomposable as (3.2), where V_{jh}^i is decomposition tensor field and U_k is independent of x^m to nth order.

Taking h-covariant derivative of (3.2) with respect to x^m to nth order, assume that U_k is covariant constant we get

$$R^{i}_{jkh|m_{1}|m_{2}|m_{3}|\dots|m_{n}} = U_{k}V^{i}_{jh|m_{1}|m_{2}|m_{3}|\dots|m_{n}} .$$

By using the condition (2.16) in above equation and in view of (3.2), we get

(3.9)
$$U_k V^i_{jh|m_1|m_2|m_3|...|m_n} = \lambda_{m_1 m_2 m_3...m_n} U_k V^i_{jh} + \mu_{m_1 m_2 m_3...m_n} \left(\delta^i_h g_{jk} - \delta^i_k g_{jh} \right).$$

Since U_k is independent of x^m to nth order, equation (3.9) can be written as

(3.10)
$$(U_k V_{jh}^i)_{|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1 m_2 m_3 \dots m_n} (U_k V_{jh}^i) + \mu_{m_1 m_2 m_3 \dots m_n} (\delta_h^i g_{jk} - \delta_k^i g_{jh})$$

So, the proof of theorem is completed, we can say,

Theorem 3.2. In $GR^h - n^{th}RF$, under the decomposition (3.2) and if U_k is covariant constant, then the decomposition tensor $(U_kV_{jh}^i)$ satisfies the generalized nth-recurrence property.

In view of equation (3.9), and where $\omega_{m_1m_2m_3...m_n}^k = \mu_{m_1m_2m_3...m_n}/U_k$ we get

(3.11)
$$V^{i}_{jh|m_{1}|m_{2}|m_{3}|...|m_{n}} = \lambda_{m_{1}m_{2}m_{3}...m_{n}} V^{i}_{jh} + \omega^{k}_{m_{1}m_{2}m_{3}...m_{n}} \left(\delta^{i}_{h} \, g_{jk} - \delta^{i}_{k} \, g_{jh} \right).$$
 Above equation can be written as

$$\begin{array}{ll} (3.12) & V^{i}_{jh|m_{1}|m_{2}|m_{3}|...|m_{n}} = \lambda_{m_{1}m_{2}m_{3}...m_{n}}V^{i}_{jh} + \\ (\theta^{i}_{m_{1}m_{2}m_{3}...m_{n}hj} - \theta^{i}_{m_{1}m_{2}m_{3}...m_{n}jh}) \; , \\ \text{where} & \theta^{i}_{m_{1}m_{2}m_{3}...m_{n}hj} = \omega^{k}_{m_{1}m_{2}m_{3}...m_{n}}\delta^{i}_{h}\,g_{jk} \quad \text{ and } \\ \theta^{i}_{m_{1}m_{2}m_{3}...m_{n}jh} = \omega^{k}_{m_{1}m_{2}m_{3}...m_{n}}\delta^{i}_{k}\,g_{jh} \; . \text{ If the tensor field } \theta^{i}_{m_{1}m_{2}m_{3}...m_{n}hj} \text{ is symmetric in last two indicator, then the equation (3.12) can be written as} \end{array}$$

$$(3.13) \qquad V^i_{jh|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1m_2m_3\dots m_n} V^i_{jh} \; .$$

Transvecting (3.13) by y^j using (2.11b), we get

(3.14)
$$V^i_{h|m_1|m_2|m_3|...|m_n} = \lambda_{m_1m_2m_3...m_n}V^i_h$$
, where $V^i_h = V^i_{ih}y^j$.

Transvecting (3.10) by y^k using (2.11b), (2.9a) and (2.9c), we get

$$(3.15) \qquad (UV^i_{jh})_{|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1m_2m_3\dots m_n} (UV^i_{jh}) + \mu_{m_1m_2m_3\dots m_n} \left(\delta^i_h y_{j^-} y^i g_{jh}\right) \; , \\ \text{where } U = U_k y^k \; .$$

Transvecting (3.15) by y^j using (2.11b), (2.8) and (2.9c), we get

(3.16)
$$(UV_h^i)_{|m_1|m_2|m_3|...|m_n} = \lambda_{m_1m_2m_3...m_n}(UV_h^i) + \mu_{m_1m_2m_3...m_n} \left(\delta_h^i F^2 - y^i y_h \right) ,$$

where $V_h^i = V_{ih}^i y^j$.

Contracting the indices i and h in (3.16) using (2.6) and (2.8), we get:

$$\begin{array}{ll} (3.17) & (UV)_{|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1m_2m_3\dots m_n}(UV) + \\ \mu_{m_1m_2m_3\dots m_n}(n-1)F^2, \text{ where } V_i^i = V. \end{array}$$

If n = 1, the equation (3.17) can be written as

$$(3.18) (UV)_{|m_1|m_2|m_3|...|m_n} = \lambda_{m_1m_2m_3...m_n}(UV)$$

Since U is constant, above equation can be written as

$$(3.19) V_{|m_1|m_2|m_2|...|m_n} = \lambda_{m_1m_2m_2...m_n} V$$

Corollary 3.2. Under the decomposition (3.2), if U_k is covariant constant and U is constant, then the behavior of decomposition tensors V_{jh}^i , V_h^i , UV and V are nth-recurrent. Let us consider Cartan's third Curvature tensor R_{jkh}^i is decomposable as (3.3), where U_j^i and V_{kh} are the decomposition tensors field. Taking h-covariant derivative of (3.3) with respect to x^m to nth order, assume that U_j^i is independent of x^m , we get

$$R^i_{jkh|m_1|m_2|m_3|\dots|m_n} = U^i_j V_{kh|m_1|m_2|m_3|\dots|m_n} \ .$$

By using the condition (2.16) in above equation and in view of (3.3), we get in above equation, we get

$$(3.20) \qquad U^i_j V_{kh|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1 m_2 m_3 \dots m_n} U^i_j V_{kh} + \mu_{m_1 m_2 m_3 \dots m_n} \Big(\, \delta^i_h \, g_{jk} - \delta^i_k \, g_{jh} \Big).$$

Since U_j^i is independent of x^m to nth order, equation (3.20) can be written as

$$\begin{array}{ll} (3.21) & (U^i_j V_{kh})_{|m_1|m_2|m_3|\ldots|m_n} = \lambda_{m_1 m_2 m_3 \ldots m_n} (U^i_j V_{kh}) + \\ \mu_{m_1 m_2 m_3 \ldots m_n} \left(\delta^i_h \, g_{jk} - \delta^i_k \, g_{jh} \right). \end{array}$$

So, the proof of theorem is completed, we can say,

Theorem 3.3. In $GR^h - n^{th}RF$, under the decomposition (3.3), the decomposition tensor $(U_j^iV_{kh})$ satisfies the generalized nth-recurrence property. We can conclude that if $\delta_h^i g_{jk} = \delta_k^i g_{jh}$, then the decomposition tensors $(U^i V_{jkh})$, $(U_k V_{jh}^i)$ and $(U_j^i V_{kh})$ behave as nth-recurrent satisfy the following conditions

$$(3.22) \qquad (U^i \, V_{jkh})_{|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1 m_2 m_3 \dots m_n} \big(U^i \, V_{jkh} \big)$$

(3.23)
$$(U_k V_{jh}^i)_{|m_1|m_2|m_3|...|m_n} = \lambda_{m_1 m_2 m_3...m_n} (U_k V_{jh}^i)$$

and

(3.24)
$$(U_j^i V_{kh})_{|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1 m_2 m_3 \dots m_n} (U_j^i V_{kh}) ,$$
 respectively.

Example: In order to illustrate the effectiveness of the proposed findings, we consider example of the nth-recurrence properties.

The decomposition tensor $(U^i V_{jkh})$ is nth-recurrent if and only if it satisfies

$$(U^{i} V_{jkh})_{|m_{1}|m_{2}|m_{3}|...|m_{n}} = \lambda_{m_{1}m_{2}m_{3}...m_{n}} (U^{i} V_{jkh})$$

Firstly, since the decomposition tensor $(U^i V_{jkh})$ is nth-recurrent, the condition (3.22) is satisfied. In view of (2.14), the decomposition tensor $(U^i V_{jkh})$ on indicatrix given by

(3.25)
$$p.(U^{i}V_{ikh}) = U^{a}V_{bcd}h_{a}^{i}h_{b}^{b}h_{k}^{c}h_{h}^{d}.$$

By taking h-covariant derivative of (3.25) with respect to x^m to nth order, using equation (3.22) and the fact that h_b^a is constant in above equation, we get

$$\begin{split} [p.(U^i\,V_{jkh})]_{|m_1|m_2|m_3|\dots|m_n} = \\ \lambda_{m_1m_2m_3\dots m_n} U^a V_{bcd} h_a^i h_b^b h_k^c h_h^d \;. \end{split}$$

Using (3.25) in above equation, we get

$$[p.(U^{i}V_{jkh})]_{|m_{1}|m_{2}|m_{3}|...|m_{n}} = \lambda_{m_{1}m_{2}m_{3}...m_{n}}[p.(U^{i}V_{jkh})].$$

Above equation means the projection on indicatrix for the decomposition tensor (U^iV_{jkh}) behaves as nth-recurrent. Secondly, let the projection on indicatrix for the decomposition tensor (U^iV_{jkh}) is nth-recurrent, that is, it satisfies equation (3.26). By using (3.25) in equation (3.26), we get

$$(U^{a}V_{bcd}h_{a}^{i}h_{b}^{h}h_{c}^{k}h_{d}^{h})_{|m_{1}|m_{2}|m_{3}|...|m_{n}} = \lambda_{m_{1}m_{2}m_{3}...m_{n}}U^{a}V_{bcd}h_{a}^{i}h_{b}^{h}h_{c}^{k}h_{d}^{h}.$$
 Since $h_{j}^{i} = \delta_{j}^{i} - l^{i}l_{j}$, above equation we can written as
$$[(U^{i}V_{jkh}) - (U^{i}V_{jkd})l^{d}l_{h} - (U^{i}V_{jch})l^{c}l_{k} + (U^{i}V_{jcd})l^{c}l_{k}l^{d}l_{h} - (U^{i}V_{bkh})l^{b}l_{j} + (U^{i}V_{bkd})l^{b}l_{j}l^{d}l_{h} + (U^{i}V_{bcd})l^{b}l_{j}l^{c}l_{k} - (U^{a}V_{jkh})l^{i}l_{a}l^{c}l_{h} - (U^{a}V_{jkh})l^{i}l_{a} + (U^{a}V_{jkh})l^{i}l_{a}l^{c}l_{k} - (U^{a}V_{jch})l^{i}l_{a}l^{c}l_{k} - (U^{a}V_{jcd})l^{i}l_{a}l^{c}l_{k}l^{d}l_{h} + (U^{a}V_{bkh})l^{i}l_{a}l^{b}l_{j} - (U^{a}V_{bkd})l^{i}l_{a}l^{b}l_{j}l^{c}l_{k} + (U^{a}V_{bkh})l^{i}l_{a}l^{b}l_{j}l^{c}l_{k} + (U^{a}V_{bcd})l^{i}l_{a}l^{b}l_{j}l^{c}l_{k} + (U^{a}V_{bcd})l^{i}l_{a}l^{b}l_{j}l^{c}l_{k} + (U^{a}V_{bcd})l^{i}l_{a}l^{b}l_{j}l^{c}l_{k} + (U^{a}V_{bcd})l^{i}l_{a}l^{b}l_{j}l^{c}l_{k} + (U^{i}V_{jcd})l^{c}l_{k}l^{d}l_{h} - (U^{i}V_{jch})l^{c}l_{k} + (U^{i}V_{bcd})l^{c}l_{k}l^{d}l_{h} - (U^{i}V_{bch})l^{b}l_{j}l^{c}l_{k} - (U^{i}V_{bcd})l^{b}l_{j}l^{c}l_{k}l^{d}l_{h} - (U^{a}V_{jch})l^{i}l_{a}l^{c}l_{k}l^{d}l_{h} - (U^{a}V_{jch})l^{i}l_{a}l^{c}l_{k}l^{d}l_{h} + (U^{a}V_{jch$$

$$-(U^{a}V_{bkd})l^{i}l_{a}l^{b}l_{j}l^{d}l_{h}-(U^{a}V_{bch})l^{i}l_{a}l^{b}l_{j}l^{c}l_{k}+\\(U^{a}V_{bcd})l^{i}l_{a}l^{b}l_{j}l^{c}l_{k}l^{d}l_{h}].$$

From, $l^i=\frac{y^i}{F}$ and $l_i=\frac{y_i}{F}$, if $(U^aV_{bcd})y_a=(U^aV_{bcd})y^b=(U^aV_{bcd})y^c=(U^aV_{bcd})y^d=0$, then above equation can be written as

$$(U^i \, V_{jkh})_{|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1m_2m_3\dots m_n} \big(U^i \, V_{jkh} \big).$$

Above equation means the decomposition tensor (U^iV_{jkh}) behaves as nth-recurrent. Also, we can use same technique for showing the decomposition tensors $(U_kV^i_{jh})$ and $(U^i_jV_{kh})$ are nth-recurrent if and only if the projection on indicatrix for them behave as nth-recurrent. We consider the decomposition of curvature tensor field R^i_{jkh} in the following form (3.4), where V^i_j is non-zero tensor field, \emptyset_k and ψ_h are covariant constant. Taking h-covariant derivative of (3.4) with respect to x^m to nth order, we get

$$R^i_{jkh|m_1|m_2|m_3|\dots|m_n} = V^i_{j|m_1|m_2|m_3|\dots|m_n} \emptyset_k \psi_h \ .$$

By using the condition (2.16) in above equation and in view of (3.4), we get

(3.27)
$$V_{j|m_{1}|m_{2}|m_{3}|...|m_{n}}^{i} \emptyset_{k} \psi_{h} = \lambda_{m_{1}m_{2}m_{3}...m_{n}} V_{j}^{i} \emptyset_{k} \psi_{h} + \mu_{m_{1}m_{2}m_{3}...m_{n}} \left(\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh} \right).$$

Since \emptyset_k and ψ_h are independent of x^m to nth order, equation (3.27) can be written as

$$(3.28) \qquad (V_j^i \emptyset_k \psi_h)_{|m_1|m_2|m_3|...|m_n} = \lambda_{m_1 m_2 m_3 ... m_n} (V_j^i \emptyset_k \psi_h) + \mu_{m_1 m_2 m_3 ... m_n} (\delta_h^i g_{jk} - \delta_k^i g_{jh})$$

In conclusion the proof of theorem is completed, we can determine,

Theorem 3.4. In GR^h - $n^{th}RF$, under the decomposition (3.4) and if \emptyset_k and ψ_h are covariant constant, then the decomposition tensor $(V_j^i \emptyset_k \psi_h)$ satisfies the generalized nth-recurrence property.

In view of equation (3.27), and where $\alpha_{m_1m_2m_3...m_n}^{kh} = \mu_{m_1m_2m_3...m_n}/\emptyset_k\psi_h$, we get

$$(3.29) V_{j|m_{1}|m_{2}|m_{3}...|m_{n}}^{i} V_{k}^{i} V_{j}^{i} + \alpha_{m_{1}m_{2}m_{3}...m_{n}}^{kh} (\delta_{h}^{i} g_{jk} - \delta_{k}^{i} g_{jh}).$$

Above equation can be writer as

$$(3.30) \quad V^{i}_{j|m_{1}|m_{2}|m_{3}|...|m_{n}} = \lambda_{m_{1}m_{2}m_{3}...m_{n}}V^{i}_{j} + (\theta^{i}_{m_{1}m_{2}m_{3}...m_{n}j} - \theta^{i}_{m_{1}m_{2}m_{3}...m_{n}j}),$$

where
$$\theta^i_{m_1m_2m_3\dots\,m_nj}=\alpha^{kh}_{m_1m_2m_3\dots\,m_n}\delta^i_h\,g_{jk}$$
 .

From (3.30), we get

$$(3.31) \quad V^i_{j|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1m_2m_3\dots m_n} V^i_j \; .$$

Contracting the indices i and j in (3.28) using (2.7b), we get

$$(3.32) \quad (V \emptyset_k \psi_h)_{|m_1|m_2|m_3|\dots|m_n} = \lambda_{m_1 m_2 m_3 \dots m_n} (V \emptyset_k \psi_h) + \mu_{m_1 m_2 m_3 \dots m_n} (g_{hk} - g_{kh}) \ ,$$

where
$$V_i^i = V$$

Since g_{hk} is symmetric, we get

$$(3.33) (V\emptyset_k \psi_h)_{|m_1|m_2|m_3|...|m_n} = \lambda_{m_1 m_2 m_3...m_n} (V\emptyset_k \psi_h)$$

Since \emptyset_k and ψ_h are independent of x^m to nth order, above equation can be written:

$$(3.34) V_{|m_1|m_2|m_3|...|m_n} = \lambda_{m_1m_2m_3...m_n} V$$

In conclusion the proof of theorem is completed, we can determine the corollary,

Corollary 3.3. Under the decomposition (3.4), if \emptyset_k and ψ_h are covariant constant, then the behavior of decomposition tensors V_i^i , $V\emptyset_k\psi_h$ and V are nth-recurrent.

IV. CONCLUSIONS

In this research, we have conducted a comprehensive study of generalized recurrent tensor fields of R-nth order in Finsler manifolds. By employing advanced tensor calculus and differential geometry techniques, we have successfully achieved the following:

- **Decomposition theorems:** We have derived a set of novel decomposition theorems that characterize the conditions under which a generalized recurrent tensor field can be expressed as a sum of simpler tensor fields. These theorems provide a deeper understanding of the structure and properties of these tensor fields.
- Geometric insights: Our analysis has revealed new insights into the geometric properties of Finsler manifolds. Specifically, we have shown how the decomposition of generalized recurrent tensor fields can be used to explore the curvature and torsion of these manifolds.
- Potential applications: The results obtained in this study have the potential to find applications in various fields, including physics and engineering.
 For instance, our findings could be useful in the development of new theories of gravity or in the study of materials with complex geometric structures.

V. RECOMMENDATIONS

Based on the findings of this research, we recommend the following avenues for future investigation:

- Extension to other geometric structures: It would be interesting to explore the decomposition of generalized recurrent tensor fields in other geometric structures, such as Finslerian-Lagrangian geometries or generalized Finsler geometries.
- Applications to specific physical theories: The results of this study could be applied to specific physical theories, such as general relativity or string theory.

- Numerical simulations: Numerical simulations could be used to visualize and analyze the behavior of generalized recurrent tensor fields in various scenarios.
- **Development of new invariants:** The decomposition theorems obtained in this study could be used to develop new invariants for characterizing the geometry of Finsler manifolds.

REFERENCES

- [1] Al-Qashbari, A.M.A., "Certain types of generalized recurrent Finsler space," Ph.D. dissertation, University of Aden, Aden, Yemen, 2016.
- [2] Al-Qashbari, A.M., Abdallah, A.A., and Nasr, K.S., "An extension of generalized U|hU_{|h}U|hbirecurrent Finsler space," Int. J. Math. Stat. Invention, vol. 12, no. 5, pp. 21-25, Oct. 2024.
- [3] Al-Qashbari, A.M., Abdallah, A.A., and Al-ssallal, F.A., "Recurrent Finsler structures with higher-order generalizations defined by special curvature tensors," Int. J. Adv. Res. Sci. Commun. Technol., vol. 4, no. 1, pp. 68-75, 2024.
- [4] Al-Qashbari, A.M., Abdallah, A.A., and Ahmed, F.A., "A study on the extensions and developments of generalized BK-recurrent Finsler space," Int. J. Adv. Appl. Math. Mech., vol. 12, no. 1, pp. 38-45, 2024.
- [5] Al-Qashbari, A.M., Abdallah, A.A., and Ahmed, F.A., "On generalized birecurrent Finsler space of mixed covariant derivatives in Cartan sense," Int. J. Res. Public. Rev., vol. 5, no. 8, pp. 2834-2840, 2024.
- [6] Al-Qashbari, A.M. and Halboup, A.H.M., "Some identities Weyl's curvature tensor and conformal curvature tensor," Univ. Lahej J. Appl. Sci. Humanit., vol. 1, no. 1, pp. 1-9, 2024.
- [7] Al-Qashbari, A.M., Saleh, S., and Ibedou, I., "On some relations of R-projective curvature tensor in recurrent Finsler space," J. Non-Linear Model. Anal., vol. 6, no. 4, pp. 1216-1227, 2024.
- [8] Hit, R., "Decomposition of Berwald's curvature tensor field," Ann. Fac. Sci. (Kinshasa), vol. 1, pp. 220-226, 1975.
- [9] Pande, H. and Khan, T., "General decomposition of Berwald's curvature tensor field in recurrent Finsler space," Atti. Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur., vol. 55, pp. 680-685, 1973.
- [10] Sinha, B. and Singh, S., "Decomposition of recurrent curvature tensor fields of R-th order in Finsler manifolds," Publ. Inst. Math. (Nouv. Sér.), vol. 33, no. 47, pp. 217-220, 1983.
- [11] Abdallah, A., Navlekar, A., Ghadle, K., and Hamoud, A., "Decomposition for Cartan's second curvature tensor of different order in Finsler space," Nonlinear Funct. Anal. Appl., vol. 27, no. 2, pp. 433-448, 2022.
- [12] Takano, K., "Decomposition of curvature tensor in recurrent space," Tensor N.S., vol. 18, pp. 343-347, 1967.
- [13] Mishra, P., Srivastava, K., and Mirshra, S., "Decomposition of curvature tensor

- $Rjikh(x,x.)R_j^i\{\}_{kh}(x, x^{\cdot}.)Rjikh(x,x.)$ in a Finsler space equipped with non-symmetric connection," J. Chem. Biol. Phys. Sci. Sci. Sec., vol. 13, no. 2, pp. 1498-1503, 2013.
- [14] Rawat, K. and Chauhan, S., "Study on Einstein-Sasakian decomposable recurrent space of first order," J. Theolog. Stud., vol. 12, pp. 85-92, 2018.
- [15] Rawat, K. and Chauhan, S., "Study on Einstein-Käehlerian decomposable recurrent space of first order," J. Theolog. Stud., vol. 9, pp. 45-51, 2015.
- [16] Rund, H., The Differential Geometry of Finsler Space, Springer-Verlag, Berlin, 1959. 2nd ed., Nauka, Moscow, 1981.

105