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Abstract— In this paper, we investigate the 

decomposition of Cartan's third curvature tensor 𝑹𝒋𝒌𝒉
𝒊  in the 

framework of generalized 𝑹𝒉 -nth recurrent Finsler spaces. 

We examine three distinct decompositions of the curvature 

tensor and analyze the resulting equations under covariant 

derivatives of the decomposed tensor fields. The 

decompositions are expressed in terms of independent tensor 

fields, and we explore the recurrence properties of the 

resulting decomposition tensors. We show that under certain 

conditions, these decomposition tensors exhibit generalized 

nth-recurrence properties, which are crucial for 

understanding the geometric behavior of these tensors in 

Finsler geometry. The results provide a deeper understanding 

of the curvature properties in higher-dimensional recurrent 

Finsler spaces, with implications for both theoretical and 

applied geometry. 

Keywords— Finsler Manifold, Generalized Recurrent 

Tensor Field, Decomposition. 

I. INTRODUCTION 

The study of curvature tensors in differential geometry is vital 

for understanding the structure of various geometric spaces, 

particularly Finsler spaces. Finsler spaces, which generalize 

Riemannian manifolds, provide a natural framework for 

examining various curvature properties. Cartan's third 

curvature tensor, denoted as 𝑅𝑗𝑘ℎ
𝑖  , plays a crucial role in 

describing the geometry of such spaces. In this paper, we 

explore the decomposition of this curvature tensor in the 

context of generalized 𝑅ℎ -nth recurrent Finsler spaces. 

Specifically, we discuss how the curvature tensor can be 

decomposed into various forms, and we investigate the 

behavior of these decompositions under certain conditions. 

Through these decompositions, we derive recurrence 

properties of the corresponding tensors, which are essential for 

understanding the structure of these spaces in higher-

dimensional settings. 

Tensor fields play a fundamental role in differential 

geometry, serving as essential tools for describing geometric 

objects and their properties. In particular, recurrent tensor 

fields, characterized by a covariant derivative that is 

proportional to the tensor itself, have been extensively studied 

in the context of Riemannian and pseudo-Riemannian 

manifolds. However, the study of recurrent tensor fields in 

Finsler manifolds, which are more general geometric 

structures than Riemannian manifolds, remains a relatively 

unexplored area. 

In this paper, we focus on a specific class of tensor fields 

known as generalized recurrent tensor fields of R-nth order. 

These tensor fields exhibit a more complex recurrence relation 

compared to standard recurrent tensor fields. Our primary 

objective is to investigate the decomposition properties of 

these tensor fields within the framework of Finsler geometry. 

By decomposing a generalized recurrent tensor field into 

simpler components, we aim to gain deeper insights into its 

geometric significance and to establish a more comprehensive 

theory of tensor fields in Finsler manifolds. Finsler manifolds 

are a generalization of Riemannian manifolds where the 

metric tensor depends not only on the point of the manifold 

but also on the direction of the tangent vector at that point. 

This allows for a more general study of geometry and physics 

in spaces with non-constant curvature. Generalized recurrent 

tensor fields are tensor fields that satisfy a certain recurrence 

relation. This relation can be used to study the geometry and 

dynamics of Finsler manifolds. 

In this paper, we will discuss the decomposition of 

generalized recurrent tensor fields of -nth order in Finsler 

manifolds. We will obtain different tensors which satisfy the 

recurrence property under the decomposition. Also, we will 

prove the decomposition for different tensors are non-

vanishing. As an illustration of the applicability of the 

obtained results, we will finish this work with some illustrative 

examples. This paper is organized as follows. In Section 2, we 

will introduce the necessary preliminaries. In Section 3, we 

will discuss the decomposition of generalized recurrent tensor 

fields of nth order. In Section 4, we will give some illustrative 

examples. Finally, in Section 5, we will give some concluding 

remarks. The study of curvature tensors in Finsler geometry 

has been an area of significant research in recent years, as it 

provides deep insights into the structural properties of Finsler 

spaces. Various forms of curvature decomposition have been 

explored to better understand the geometrical behavior of 

these spaces [1] introduced certain types of generalized 

recurrent Finsler spaces, contributing to the development of 

the field. Subsequent works, such as those by [2, 3, 4, 5, 6, 7], 

extended the concept of generalized Finsler spaces by 

analyzing special curvature tensors and their recurrence 

properties, which are pivotal in understanding higher-order 

generalizations of Finsler structures. In addition, the 

decomposition of curvature tensors, a technique pioneered by 

researchers like [8, 9, 10] has been used to examine the impact 

of covariant derivatives on the structure of Finsler spaces. 

https://doi.org/10.20428/jst.v30i2.2664
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These contributions provide a comprehensive framework for 

studying the complex interactions between curvature tensors 

and space recurrence in various Finsler settings. Moreover, 

works by [11, 12] highlight the significance of these 

decompositions for exploring advanced geometrical structures 

in both theoretical and applied contexts. This paper builds 

upon these prior developments to further investigate the 

decompositions of Cartan's third curvature tensor in 

generalized Finsler spaces, thereby enriching the 

understanding of curvature properties in higher-dimensional 

recurrent Finsler spaces. 

II. PRELIMINARIES  

É. Cartan in his second postulate, represented the variation of 

an arbitrary vector field  𝑋𝑖 under the infinitesimal change of 

its line element (𝑥 , 𝑦)  to (𝑥 + 𝑑𝑥 , 𝑦 + 𝑑𝑦)  by means of 

covariant (absolute) differential given by 

 

(2.1)           𝐷𝑋𝑖 = 𝑑𝑋𝑖 + 𝑋𝑗 ( 𝐶𝑗𝑘
𝑖  𝑑𝑦𝑘 +  Γ𝑗𝑘

𝑖  𝑑𝑥𝑘 ) , where  

(2.2)           a) Γ𝑗𝑘
𝑖 = 𝛾𝑗𝑘

𝑖 − 𝐶𝑚𝑘
𝑖 𝐺𝑗

𝑚 + 𝑔𝑖ℎ𝐶𝑗𝑘𝑚 𝐺ℎ
𝑚    

                   b) 𝐺𝑖 =
1

2
 𝛾𝑗𝑘

𝑖  𝑦𝑗  𝑦𝑘      and     c)    𝐺𝑗
𝑖 = 𝜕̇𝑗 𝐺𝑖 

The function  𝐺𝑖  is positively homogeneous of degree two in 

the directional argument.   

Eliminating 𝑑𝑦𝑘 from (2.1) and in terms of the absolute 

differential of  𝑙𝑖, E.́  Cartan deduced 

  

(2.3)           𝐷𝑋𝑖 = 𝐹 𝑋𝑖|𝑘 𝐷 𝑙𝑘 + 𝑋
𝑘׀
𝑖  𝑑𝑥𝑘 + 𝑦𝑘(𝜕̇𝑘 𝑋𝑖 )

𝑑𝐹

𝐹
 ,  

where, 

(2.4)           a) 𝑋𝑖|𝑘 = 𝜕̇𝑘 𝑋𝑖 + 𝑋𝑟 𝐶𝑟𝑘
𝑖 , 

                   b)𝑋
𝑘׀
𝑖 = 𝜕𝑘 𝑋

𝑖 + 𝑋𝑟 Γ𝑟𝑘
∗𝑖 − ( 𝜕̇𝑚 𝑋𝑖  ) Γ𝑠𝑘

𝑚   𝑦𝑠,  and 

                   c)    Γ𝑟𝑘
∗𝑖 = Γ𝑟𝑘

𝑖 − 𝐶𝑚𝑟
𝑖  Γ𝑠𝑘

𝑚  𝑦𝑠  

 

The function Γ𝑟𝑘
∗𝑖  defined by (2.4c) is connection parameter of 

É. Cartan, this is symmetric in the lower indices  𝑟  and  𝑘  

and positively homogeneous of degree zero in the directional 

argument and satisfies:  

 

(2.5)           𝑔𝑖ℎ  Γ𝑟𝑘
∗𝑖 = Γ𝑟ℎ𝑘

∗   

   

The equations (2.4a) and (2.4b) give two processes of 

covariant differentiation called         v-covariant differentiation 

(Cartan's first kind covariant differentiation) and h-covariant 

differentiation (Cartan's second kind covariant 

differentiation), respectively. So  Xi|k   and  𝑋|𝑘  
𝑖  are 

respectively v-covariant derivative an d  h -covariant 

derivative of the vector field  𝑋𝑖. The metric tensor  𝑔𝑖𝑗 and 

the associate metric tensor  𝑔𝑖𝑗  are related by 

 

(2.6)           𝑔𝑖𝑗  𝑔𝑗𝑘 = 𝛿𝑖
𝑘  =  {

 1         if     𝑖 = 𝑘    ,                    
 0         if     𝑖 ≠ 𝑘  .                   

 

 

The quantities  𝑔𝑖𝑗  ,  𝑔𝑖𝑗   and  𝛿𝑗
𝑖  are satisfies  

 

(2.7)           a)    𝑔𝑖𝑗 𝑔𝑖𝑗 = 𝑛       and     b)    𝛿𝑗 
𝑖 𝑔𝑖𝑘 = 𝑔𝑗𝑘 . 

 

The vector  𝑦𝑖   satisfies relation 

 

(2.8)           𝑦𝑖  𝑦
𝑖 = 𝐹2 

 

The vectors  𝑦𝑖   and 𝛿𝑘
𝑖   also satisfy the following relations  

(2.9)           a)  𝛿𝑘 
𝑖  𝑦𝑘 = 𝑦𝑖 

     b)    𝛿𝑗
𝑖  𝑔𝑗𝑘 =  𝑔𝑖𝑘    and      

 c)   𝑔𝑖𝑗 𝑦
𝑗 = 𝑦𝑖   

The metric tensor  𝑔𝑖𝑗 and the associate metric tensor 𝑔𝑖𝑗  are 

covariant constant with respect to both processes 

 

(2.10)         a) 𝑔𝑖𝑗׀𝑚 = 0      and         b)  𝑔
𝑚׀

𝑖𝑗
= 0 

 

The vectors 𝑦𝑖  , 𝑦𝑖  are vanish under h-covariant 

differentiation  

 

(2.11)         a) 𝑦𝑖׀𝑚 = 0        and         b)  𝑦
𝑚׀
𝑖 = 0 

 

The h-curvature tensor  𝑅𝑗𝑘ℎ
𝑖  (Cartan’s third curvature 

tensor), is defined by  

 

(2.12)       𝑅𝑗𝑘ℎ
𝑖 = 𝜕̇ℎ Γ𝑗𝑘

∗𝑖 + ( 𝜕̇𝑙  Γ𝑗𝑘
∗𝑖 ) 𝐺ℎ

𝑙 + 𝐶𝑗𝑚
𝑖 ( 𝜕̇𝑘 𝐺ℎ

𝑚 −

𝐺𝑘𝑙
𝑚  𝐺ℎ

𝑙  ) + Γ𝑚𝑘  
∗𝑖 Γ𝑗ℎ

∗𝑚 − [𝜕̇𝑘 Γ𝑗ℎ
∗𝑖 + ( 𝜕̇𝑙  Γ𝑗ℎ

∗𝑖  ) 𝐺𝑘
𝑙 +

𝐶𝑗𝑚
𝑖 ( 𝜕̇ℎ 𝐺𝑘

𝑚 − 𝐺ℎ𝑙
𝑚  𝐺𝑘

𝑙  ) + Γ𝑚ℎ  
∗𝑖 Γ𝑗𝑘

∗𝑚] 

                                      

The h-curvature tensor 𝑅𝑗𝑘ℎ
𝑖  is positively homogeneous of 

degree −1 in the directional argument and skew-symmetric 

in the last two lower indices  ℎ  and  𝑘 , i.e. 

 

(2.13)         𝑅𝑗𝑘ℎ
𝑖 = − 𝑅𝑗ℎ𝑘 

𝑖  

 

Definition 2.1: Let the current coordinates in the tangent 

space at the point  𝑥0  to 𝑥𝑖 . Then the indicatrix 𝐼𝑛−1  is a 

hypersurface defined by [5] 𝐹(𝑥0, 𝑥𝑖) = 1  or by the 

parametric defined by   𝑥𝑖 = 𝑥𝑖(𝑢𝑎), 𝑎 = 1,2, … , 𝑛 − 1. 

 

Definition 2.2: The projection of any tensor 𝑇𝑗
𝑖 on indicatrix 

𝐼𝑛−1 given by [5] 

(2.14)        𝑝𝑇𝑗
𝑖 = 𝑇𝑏

𝑎ℎ𝑎
𝑖 ℎ𝑗

𝑏  ,  where 

(2.15)        ℎ𝑐
𝑖 = 𝛿𝑐

𝑖 − 𝑙𝑖𝑙𝑐 . 

Let us consider a Finsler space  𝐹𝑛  whose Cartan's third 

curvature tensor 𝑅𝑗𝑘ℎ
𝑖  satisfies the following condition  

 

(2.16)        𝑅𝑗𝑘ℎ|𝑚1|𝑚2|…|𝑚𝑛

𝑖 = 𝜆𝑚1𝑚2…𝑚𝑛
 𝑅𝑗𝑘ℎ

𝑖 +

𝜇𝑚1𝑚2…𝑚𝑛
( 𝛿ℎ

𝑖  𝑔𝑗𝑘 − 𝛿𝑘
𝑖  𝑔𝑗ℎ )  

,        

 

where  𝑅𝑗𝑘ℎ
𝑖 ≠ 0  and  |𝑚1|𝑚2| … |𝑚𝑛  are h-covariant 

differentiation (Cartan's second kind covariant differential 

operator) with respect to 𝑥𝑚  to nth order,  𝜆𝑚1𝑚2…𝑚𝑛
and 

 𝜇𝑚1𝑚2…𝑚𝑛
  are recurrence tensors fields.  

 

Definition 2.3: A Finsler space 𝐹𝑛  whose Cartan's third 

curvature tensor 𝑅𝑗𝑘ℎ
𝑖  satisfying the condition (2.16), where  

𝜆𝑚1𝑚2…𝑚𝑛
  and  𝜇𝑚1𝑚2…𝑚𝑛

 are non-null covariant tensors 

fields, is called a generalized 𝑅ℎ -nth order space and the 

https://journals.ust.edu/index.php/JST
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tensor will be called generalized h-nth tensor. We shall 

denote this space briefly by  𝐺𝑅ℎ-𝑛𝑡ℎ𝑅𝐹𝑛 . 

III. DECOMPOSITION OF CURVATURE TENSOR FIELD  𝑹𝒋𝒌𝒉
𝒊  

In this paper, we will discuss the decomposition of Cartan's 

third Curvature tensor 𝑅𝑗𝑘ℎ
𝑖  in generalized 𝑅ℎ -nth recurrent 

Finsler Space. We consider the decomposition of curvature 

tensor field 𝑅𝑗𝑘ℎ
𝑖  in the following way [7] 

(3.1)       𝑅𝑗𝑘ℎ
𝑖 = 𝑈𝑖  𝑉𝑗𝑘ℎ  ,  

(3.2)       𝑅𝑗𝑘ℎ
𝑖 = 𝑈𝑘𝑉𝑗ℎ

𝑖    and 

(3.3)       𝑅𝑗𝑘ℎ
𝑖 = 𝑈𝑗

𝑖  𝑉𝑘ℎ  . 

 

Further considering the decomposition of the Curvature 

tensor 𝑅𝑗𝑘ℎ
𝑖  in the form [6] 

 

(3.4)       𝑅𝑗𝑘ℎ
𝑖 = 𝑉𝑗

𝑖∅𝑘𝜓ℎ . 

 

Let us consider Cartan's third Curvature tensor 𝑅𝑗𝑘ℎ
𝑖  is 

decomposable as (3.1), where 𝑉𝑗𝑘ℎ  is non-zero covariant 

tensor field which called decomposition tensor field and 𝑈𝑖 is 

independent of 𝑥𝑚 to nth order.  

Taking h-covariant derivative of (3.1) with respect to 𝑥𝑚 to 

nth order, assume that 𝑈𝑖 is constant we get:   

               𝑅𝑗𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝑈𝑖𝑉𝑗𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
  . 

 

By using the condition (2.16) in above equation and in view 

of (3.1), we get  

 

(3.5)       𝑈𝑖𝑉𝑗𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

𝑈𝑖  𝑉𝑗𝑘ℎ +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
( 𝛿ℎ 

𝑖 𝑔𝑗𝑘– 𝛿𝑘 
𝑖 𝑔𝑗ℎ) . 

Since 𝑈𝑖  is independent of 𝑥𝑚  to nth order, equation (3.5) 

can be written as       

              (𝑈𝑖𝑉𝑗𝑘ℎ)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

(𝑈𝑖𝑉𝑗𝑘ℎ) +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
(𝛿ℎ 

𝑖 𝑔𝑗𝑘– 𝛿𝑘 
𝑖 𝑔𝑗ℎ). 

 

Therefore, the proof of theorem is completed, we can say, 

Theorem 3.1. In 𝐺𝑅ℎ − 𝑛𝑡ℎ𝑅𝐹 , under the decomposition 

(3.1) and if 𝑈𝑖  is constant, then the decomposition tensor 

(𝑈𝑖  𝑉𝑗𝑘ℎ) satisfies the generalized nth-recurrence property. 

In view of equation (3.5), and where 𝛼𝑚1𝑚2𝑚3… 𝑚𝑛𝑖 =

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
/𝑈𝑖  we get: 

 

(3.6)      𝑉𝑗𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

𝑉𝑗𝑘ℎ +

𝛼𝑚1𝑚2𝑚3… 𝑚𝑛𝑖( 𝛿ℎ 
𝑖 𝑔𝑗𝑘– 𝛿𝑘 

𝑖 𝑔𝑗ℎ). 

Above equation can be written as 

 

(3.7)      𝑉𝑗𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

𝑉𝑗𝑘ℎ +

(∅𝑚1𝑚2𝑚3… 𝑚𝑛ℎ𝑗𝑘 

                 −∅𝑚1𝑚2𝑚3… 𝑚𝑛𝑘𝑗ℎ) , 

where ∅𝑚1𝑚2𝑚3… 𝑚𝑛ℎ𝑗𝑘 = 𝛼𝑚1𝑚2𝑚3… 𝑚𝑛𝑖𝛿ℎ 
𝑖 𝑔𝑗𝑘   and 

∅𝑚1𝑚2𝑚3… 𝑚𝑛𝑘𝑗ℎ = 𝛼𝑚1𝑚2𝑚3… 𝑚𝑛𝑖𝛿𝑘 
𝑖 𝑔𝑗ℎ . 

Now, if the tensor field ∅𝑚1𝑚2𝑚3… 𝑚𝑛ℎ𝑗𝑘 =

−∅𝑚1𝑚2𝑚3… 𝑚𝑛𝑘𝑗ℎ , then above equation can be written as  

(3.8)    𝑉𝑗𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

𝑉𝑗𝑘ℎ +

2∅𝑚1𝑚2𝑚3… 𝑚𝑛ℎ𝑗𝑘 . 

 

Corollary 3.1. In 𝐺𝑅ℎ − 𝑛𝑡ℎ𝑅𝐹 , under the decomposition 

(3.1) ,  the decomposition tensor (𝑉𝑗𝑘ℎ) is non-vanishing . 

Let us consider Cartan's third Curvature tensor 𝑅𝑗𝑘ℎ
𝑖  is 

decomposable as (3.2), where 𝑉𝑗ℎ
𝑖  is decomposition tensor 

field and 𝑈𝑘 is independent of 𝑥𝑚 to nth order. 

Taking h-covariant derivative of (3.2) with respect to 𝑥𝑚 to 

nth order, assume that 𝑈𝑘 is covariant constant we get  

                  𝑅𝑗𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝑈𝑘𝑉𝑗ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖   .  

 

By using the condition (2.16) in above equation and in view 

of (3.2), we get  

 

(3.9)         𝑈𝑘𝑉𝑗ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑈𝑘𝑉𝑗ℎ

𝑖 +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
( 𝛿ℎ 

𝑖 𝑔𝑗𝑘– 𝛿𝑘 
𝑖 𝑔𝑗ℎ). 

 

Since 𝑈𝑘  is independent of 𝑥𝑚  to nth order, equation (3.9) 

can be written as  

 

(3.10)        (𝑈𝑘𝑉𝑗ℎ
𝑖 )|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
(𝑈𝑘𝑉𝑗ℎ

𝑖 ) +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
(𝛿ℎ 

𝑖 𝑔𝑗𝑘– 𝛿𝑘 
𝑖 𝑔𝑗ℎ) 

 

So, the proof of theorem is completed, we can say, 

Theorem 3.2. In 𝐺𝑅ℎ − 𝑛𝑡ℎ𝑅𝐹 , under the decomposition 

(3.2) and if  Uk is covariant constant, then the decomposition 

tensor (𝑈𝑘𝑉𝑗ℎ
𝑖 )  satisfies the generalized nth-recurrence 

property. 

In view of equation (3.9), and where  𝜔𝑚1𝑚2𝑚3… 𝑚𝑛
𝑘 =

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
/𝑈𝑘we get 

 

(3.11)        𝑉𝑗ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑉𝑗ℎ

𝑖 +

 𝜔𝑚1𝑚2𝑚3… 𝑚𝑛
𝑘 ( 𝛿ℎ 

𝑖 𝑔𝑗𝑘– 𝛿𝑘 
𝑖 𝑔𝑗ℎ). 

Above equation can be written as 

 

(3.12)        𝑉𝑗ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑉𝑗ℎ

𝑖 +

(𝜃𝑚1𝑚2𝑚3… 𝑚𝑛ℎ𝑗
𝑖 − 𝜃𝑚1𝑚2𝑚3… 𝑚𝑛𝑗ℎ

𝑖 ) , 

where  𝜃𝑚1𝑚2𝑚3… 𝑚𝑛ℎ𝑗
𝑖 =  𝜔𝑚1𝑚2𝑚3… 𝑚𝑛

𝑘 𝛿ℎ 
𝑖 𝑔𝑗𝑘   and  

𝜃𝑚1𝑚2𝑚3… 𝑚𝑛𝑗ℎ
𝑖  

= 𝜔𝑚1𝑚2𝑚3… 𝑚𝑛
𝑘 𝛿𝑘 

𝑖 𝑔𝑗ℎ . If the tensor field 𝜃𝑚1𝑚2𝑚3… 𝑚𝑛ℎ𝑗
𝑖  is 

symmetric in last two indicator, then the equation (3.12) can 

be written as  

 

(3.13)        𝑉𝑗ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑉𝑗ℎ

𝑖  . 

 

Transvecting (3.13) by 𝑦𝑗  using (2.11b), we get  

 

(3.14)        𝑉ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑉ℎ

𝑖  ,  where 𝑉ℎ
𝑖 =

𝑉𝑗ℎ
𝑖 𝑦𝑗 . 

Transvecting (3.10) by 𝑦𝑘  using (2.11b), (2.9a) and (2.9c), 

we get  

 

(3.15)        (𝑈𝑉𝑗ℎ
𝑖 )|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
(𝑈𝑉𝑗ℎ

𝑖 ) +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
( 𝛿ℎ 

𝑖 𝑦𝑗– 𝑦𝑖𝑔𝑗ℎ  )  , 

where 𝑈 = 𝑈𝑘𝑦𝑘 . 

https://doi.org/10.20428/jst.v30i2.2664
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Transvecting (3.15) by 𝑦𝑗  using (2.11b), (2.8) and (2.9c), we 

get  

 

(3.16)        (𝑈𝑉ℎ
𝑖)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
(𝑈𝑉ℎ

𝑖) +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
( 𝛿ℎ 

𝑖 𝐹2– 𝑦𝑖𝑦ℎ  )  , 

where 𝑉ℎ
𝑖 = 𝑉𝑗ℎ

𝑖 𝑦𝑗. 

Contracting the indices i and h in (3.16) using (2.6) and (2.8), 

we get: 

 

(3.17)        (𝑈𝑉)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

(𝑈𝑉) +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
(𝑛– 1 )𝐹2, where 𝑉𝑖

𝑖 = 𝑉. 

 

If  𝑛 = 1 , the equation (3.17) can be written as  

 

(3.18)        (𝑈𝑉)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

(𝑈𝑉)  

 

Since 𝑈 is constant, above equation can be written as  

 

(3.19)        𝑉|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

𝑉   

 

Corollary 3.2. Under the decomposition (3.2), if 𝑈𝑘  is 

covariant constant and 𝑈  is constant, then the behavior of 

decomposition tensors 𝑉𝑗ℎ
𝑖  ,𝑉ℎ

𝑖 ,𝑈𝑉 and 𝑉 are nth-recurrent. 

Let us consider Cartan's third Curvature tensor 𝑅𝑗𝑘ℎ
𝑖  is 

decomposable as (3.3), where 𝑈𝑗
𝑖  and 𝑉𝑘ℎ  are the 

decomposition tensors field. Taking h-covariant derivative of 

(3.3) with respect to 𝑥𝑚  to nth order, assume that 𝑈𝑗
𝑖  is 

independent of 𝑥𝑚 , we get  

 

                  𝑅𝑗𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝑈𝑗
𝑖𝑉𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

  .  

 

By using the condition (2.16) in above equation and in view 

of (3.3), we get in above equation, we get  

 

(3.20)        𝑈𝑗
𝑖𝑉𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑈𝑗

𝑖𝑉𝑘ℎ +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
( 𝛿ℎ 

𝑖 𝑔𝑗𝑘– 𝛿𝑘 
𝑖 𝑔𝑗ℎ). 

 

Since  𝑈𝑗
𝑖  is independent of 𝑥𝑚 to nth order, equation (3.20) 

can be written as  

 

(3.21)        (𝑈𝑗
𝑖𝑉𝑘ℎ)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
(𝑈𝑗

𝑖𝑉𝑘ℎ) +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
(𝛿ℎ 

𝑖 𝑔𝑗𝑘– 𝛿𝑘 
𝑖 𝑔𝑗ℎ) . 

 

So, the proof of theorem is completed, we can say, 

Theorem 3.3. In 𝐺𝑅ℎ − 𝑛𝑡ℎ𝑅𝐹 , under the decomposition 

(3.3), the decomposition tensor (𝑈𝑗
𝑖𝑉𝑘ℎ)  satisfies the 

generalized nth-recurrence property. We can conclude that if 

 𝛿ℎ 
𝑖 𝑔𝑗𝑘 = 𝛿𝑘 

𝑖 𝑔𝑗ℎ , then the decomposition tensors (𝑈𝑖  𝑉𝑗𝑘ℎ) , 

(𝑈𝑘𝑉𝑗ℎ
𝑖 )  and (𝑈𝑗

𝑖𝑉𝑘ℎ)  behave as nth-recurrent satisfy the 

following conditions 

 

(3.22)        (𝑈𝑖  𝑉𝑗𝑘ℎ)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

(𝑈𝑖  𝑉𝑗𝑘ℎ) 

, 

(3.23)        (𝑈𝑘𝑉𝑗ℎ
𝑖 )|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
(𝑈𝑘𝑉𝑗ℎ

𝑖 )   

and   

(3.24)        (𝑈𝑗
𝑖𝑉𝑘ℎ)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
(𝑈𝑗

𝑖𝑉𝑘ℎ) , 

respectively.  

 

Example: In order to illustrate the effectiveness of the 

proposed findings, we consider example of the nth-recurrence 

properties. 

 The decomposition tensor (𝑈𝑖  𝑉𝑗𝑘ℎ) is nth-recurrent if and 

only if it satisfies 

 

(𝑈𝑖  𝑉𝑗𝑘ℎ)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

(𝑈𝑖  𝑉𝑗𝑘ℎ)                   . 

 

Firstly, since the decomposition tensor (𝑈𝑖  𝑉𝑗𝑘ℎ)  is nth-

recurrent, the condition (3.22) is satisfied. In view of (2.14), 

the decomposition tensor (𝑈𝑖  𝑉𝑗𝑘ℎ) on indicatrix given by   

 

(3.25)         𝑝. (𝑈𝑖𝑉𝑗𝑘ℎ) = 𝑈𝑎𝑉𝑏𝑐𝑑ℎ𝑎
𝑖 ℎ𝑗

𝑏ℎ𝑘
𝑐 ℎℎ

𝑑 . 

 

By taking h-covariant derivative of (3.25) with respect to 𝑥𝑚 

to nth order, using equation (3.22) and the fact that ℎ𝑏
𝑎  is 

constant in above equation, we get 

 

                  [𝑝. (𝑈𝑖  𝑉𝑗𝑘ℎ)]|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
=

 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑈𝑎𝑉𝑏𝑐𝑑ℎ𝑎

𝑖 ℎ𝑗
𝑏ℎ𝑘

𝑐 ℎℎ
𝑑 . 

 

Using (3.25) in above equation, we get 

 

(3.26) [𝑝. (𝑈𝑖  𝑉𝑗𝑘ℎ)]|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
=

 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
[𝑝. (𝑈𝑖𝑉𝑗𝑘ℎ)]        . 

 

Above equation means the projection on indicatrix for the 

decomposition tensor (𝑈𝑖𝑉𝑗𝑘ℎ)  behaves as nth-recurrent. 

Secondly, let the projection on indicatrix for the 

decomposition tensor (𝑈𝑖𝑉𝑗𝑘ℎ)  is nth-recurrent, that is, it 

satisfies equation (3.26). By using (3.25) in equation (3.26), 

we get 

               (𝑈𝑎𝑉𝑏𝑐𝑑ℎ𝑎
𝑖 ℎ𝑗

𝑏ℎ𝑘
𝑐 ℎℎ

𝑑)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
=

𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑈𝑎𝑉𝑏𝑐𝑑ℎ𝑎

𝑖 ℎ𝑗
𝑏ℎ𝑘

𝑐 ℎℎ
𝑑  . 

Since  ℎ𝑗
𝑖 = 𝛿𝑗 

𝑖 − 𝑙𝑖𝑙𝑗 , above equation we can written as  

[(𝑈𝑖𝑉𝑗𝑘ℎ) − (𝑈𝑖𝑉𝑗𝑘𝑑)𝑙𝑑𝑙ℎ − (𝑈𝑖𝑉𝑗𝑐ℎ)𝑙𝑐𝑙𝑘 +

(𝑈𝑖𝑉𝑗𝑐𝑑)𝑙𝑐𝑙𝑘𝑙𝑑𝑙ℎ − (𝑈𝑖𝑉𝑏𝑘ℎ)𝑙𝑏𝑙𝑗 + (𝑈𝑖𝑉𝑏𝑘𝑑)𝑙𝑏𝑙𝑗𝑙𝑑𝑙ℎ +

(𝑈𝑖𝑉𝑏𝑐ℎ)𝑙𝑏𝑙𝑗𝑙𝑐𝑙𝑘 − (𝑈𝑖𝑉𝑏𝑐𝑑)𝑙𝑏𝑙𝑗𝑙𝑐𝑙𝑘𝑙𝑑𝑙ℎ − (𝑈𝑎𝑉𝑗𝑘ℎ)𝑙𝑖𝑙𝑎 +

(𝑈𝑎𝑉𝑗𝑘𝑑)𝑙𝑖𝑙𝑎𝑙𝑑𝑙ℎ + (𝑈𝑎𝑉𝑗𝑐ℎ)𝑙𝑖𝑙𝑎𝑙𝑐𝑙𝑘 −

(𝑈𝑎𝑉𝑗𝑐𝑑)𝑙𝑖𝑙𝑎𝑙𝑐𝑙𝑘𝑙𝑑𝑙ℎ + (𝑈𝑎𝑉𝑏𝑘ℎ)𝑙𝑖𝑙𝑎𝑙𝑏𝑙𝑗 −

 (𝑈𝑎𝑉𝑏𝑘𝑑)𝑙𝑖𝑙𝑎𝑙𝑏𝑙𝑗𝑙𝑑𝑙ℎ − (𝑈𝑎𝑉𝑏𝑐ℎ)𝑙𝑖𝑙𝑎𝑙𝑏𝑙𝑗𝑙𝑐𝑙𝑘 +

(𝑈𝑎𝑉𝑏𝑐𝑑)𝑙𝑖𝑙𝑎𝑙𝑏𝑙𝑗𝑙𝑐𝑙𝑘𝑙𝑑𝑙ℎ]|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
=

𝜆𝑚1𝑚2𝑚3…𝑚𝑛
[(𝑈𝑖𝑉𝑗𝑘ℎ) − (𝑈𝑖𝑉𝑗𝑘𝑑)𝑙𝑑𝑙ℎ  

               −(𝑈𝑖𝑉𝑗𝑐ℎ)𝑙𝑐𝑙𝑘 + (𝑈𝑖𝑉𝑗𝑐𝑑)𝑙𝑐𝑙𝑘𝑙𝑑𝑙ℎ −

(𝑈𝑖𝑉𝑏𝑘ℎ)𝑙𝑏𝑙𝑗 + (𝑈𝑖𝑉𝑏𝑘𝑑)𝑙𝑏𝑙𝑗𝑙𝑑𝑙ℎ 

               +(𝑈𝑖𝑉𝑏𝑐ℎ)𝑙𝑏𝑙𝑗𝑙𝑐𝑙𝑘 − (𝑈𝑖𝑉𝑏𝑐𝑑)𝑙𝑏𝑙𝑗𝑙𝑐𝑙𝑘𝑙𝑑𝑙ℎ −

(𝑈𝑎𝑉𝑗𝑘ℎ)𝑙𝑖𝑙𝑎 + (𝑈𝑎𝑉𝑗𝑘𝑑)𝑙𝑖𝑙𝑎𝑙𝑑𝑙ℎ 

               +(𝑈𝑎𝑉𝑗𝑐ℎ)𝑙𝑖𝑙𝑎𝑙𝑐𝑙𝑘 − (𝑈𝑎𝑉𝑗𝑐𝑑)𝑙𝑖𝑙𝑎𝑙𝑐𝑙𝑘𝑙𝑑𝑙ℎ +

(𝑈𝑎𝑉𝑏𝑘ℎ)𝑙𝑖𝑙𝑎𝑙𝑏𝑙𝑗 
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               −(𝑈𝑎𝑉𝑏𝑘𝑑)𝑙𝑖𝑙𝑎𝑙𝑏𝑙𝑗𝑙𝑑𝑙ℎ − (𝑈𝑎𝑉𝑏𝑐ℎ)𝑙𝑖𝑙𝑎𝑙𝑏𝑙𝑗𝑙𝑐𝑙𝑘 +

(𝑈𝑎𝑉𝑏𝑐𝑑)𝑙𝑖𝑙𝑎𝑙𝑏𝑙𝑗𝑙𝑐𝑙𝑘𝑙𝑑𝑙ℎ]. 

From, 𝑙𝑖 =
𝑦𝑖

𝐹
  and  𝑙𝑖 =

𝑦𝑖

𝐹
 , if (𝑈𝑎𝑉𝑏𝑐𝑑)𝑦𝑎 = (𝑈𝑎𝑉𝑏𝑐𝑑)𝑦𝑏 =

(𝑈𝑎𝑉𝑏𝑐𝑑)𝑦𝑐 = (𝑈𝑎𝑉𝑏𝑐𝑑)𝑦𝑑 = 0 , then above equation can be 

written as 

               (𝑈𝑖  𝑉𝑗𝑘ℎ)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

(𝑈𝑖  𝑉𝑗𝑘ℎ). 

 

Above equation means the decomposition tensor (𝑈𝑖𝑉𝑗𝑘ℎ) 

behaves as nth-recurrent. Also, we can use same technique 

for showing the decomposition tensors (𝑈𝑘𝑉𝑗ℎ
𝑖 ) and (𝑈𝑗

𝑖𝑉𝑘ℎ) 

are nth-recurrent if and only if the projection on indicatrix for 

them behave as nth-recurrent. We consider the decomposition 

of curvature tensor field 𝑅𝑗𝑘ℎ
𝑖  in the following form (3.4), 

where 𝑉𝑗
𝑖  is non-zero tensor field, ∅𝑘  and 𝜓ℎ  are covariant 

constant. Taking h-covariant derivative of (3.4) with respect 

to 𝑥𝑚 to nth order, we get 

  

               𝑅𝑗𝑘ℎ|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝑉𝑗|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 ∅𝑘𝜓ℎ  .  

 

By using the condition (2.16) in above equation and in view 

of (3.4), we get  

 

(3.27)     𝑉𝑗|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 ∅𝑘𝜓ℎ = 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑉𝑗

𝑖∅𝑘𝜓ℎ +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
( 𝛿ℎ 

𝑖 𝑔𝑗𝑘– 𝛿𝑘 
𝑖 𝑔𝑗ℎ). 

 

Since ∅𝑘  and 𝜓ℎ  are independent of 𝑥𝑚  to nth order, 

equation (3.27) can be written as  

(3.28) (𝑉𝑗
𝑖∅𝑘𝜓ℎ)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

=

𝜆𝑚1𝑚2𝑚3…𝑚𝑛
(𝑉𝑗

𝑖∅𝑘𝜓ℎ) + 𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
(𝛿ℎ 

𝑖 𝑔𝑗𝑘– 𝛿𝑘 
𝑖 𝑔𝑗ℎ) 

 

In conclusion the proof of theorem is completed, we can 

determine, 

Theorem 3.4. In 𝐺𝑅ℎ-𝑛𝑡ℎ𝑅𝐹, under the decomposition (3.4) 

and if  ∅𝑘  and 𝜓ℎ  are covariant constant, then the 

decomposition tensor (𝑉𝑗
𝑖∅𝑘𝜓ℎ) satisfies the generalized nth-

recurrence property. 

In view of equation (3.27), and where 𝛼𝑚1𝑚2𝑚3… 𝑚𝑛
𝑘ℎ =

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
/∅𝑘𝜓ℎ , we get 

(3.29) 𝑉𝑗|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑉𝑗

𝑖 +

𝛼𝑚1𝑚2𝑚3… 𝑚𝑛
𝑘ℎ ( 𝛿ℎ 

𝑖 𝑔𝑗𝑘– 𝛿𝑘 
𝑖 𝑔𝑗ℎ). 

 

Above equation can be writer as 

 

(3.30) 𝑉𝑗|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑉𝑗

𝑖 +

(𝜃𝑚1𝑚2𝑚3… 𝑚𝑛𝑗
𝑖 − 𝜃𝑚1𝑚2𝑚3… 𝑚𝑛𝑗

𝑖 ), 

 

where 𝜃𝑚1𝑚2𝑚3… 𝑚𝑛𝑗
𝑖 = 𝛼𝑚1𝑚2𝑚3… 𝑚𝑛

𝑘ℎ 𝛿ℎ 
𝑖 𝑔𝑗𝑘 . 

 

From (3.30), we get  

 

(3.31)     𝑉𝑗|𝑚1|𝑚2|𝑚3|…|𝑚𝑛

𝑖 = 𝜆𝑚1𝑚2𝑚3…𝑚𝑛
𝑉𝑗

𝑖 . 

 

Contracting the indices 𝑖 and 𝑗 in (3.28) using (2.7b), we get  

 

(3.32)   (𝑉∅𝑘𝜓ℎ)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

(𝑉∅𝑘𝜓ℎ) +

𝜇𝑚1𝑚2𝑚3… 𝑚𝑛
( 𝑔ℎ𝑘– 𝑔𝑘ℎ)  , 

 

where 𝑉𝑖
𝑖 = 𝑉 

Since 𝑔ℎ𝑘 is symmetric, we get 

 

(3.33)      (𝑉∅𝑘𝜓ℎ)|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

(𝑉∅𝑘𝜓ℎ)  

 

Since ∅𝑘 and 𝜓ℎ are independent of 𝑥𝑚 to nth order, above 

equation can be written: 

 

(3.34)        𝑉|𝑚1|𝑚2|𝑚3|…|𝑚𝑛
= 𝜆𝑚1𝑚2𝑚3…𝑚𝑛

𝑉 

 

In conclusion the proof of theorem is completed, we can 

determine the corollary, 

Corollary 3.3. Under the decomposition (3.4), if ∅𝑘 and 𝜓ℎ 

are covariant constant, then the behavior of decomposition 

tensors  𝑉𝑗
𝑖 , 𝑉∅𝑘𝜓ℎ  and  𝑉 are nth-recurrent. 

 

IV. CONCLUSIONS 

In this research, we have conducted a comprehensive study of 

generalized recurrent tensor fields of R-nth order in Finsler 

manifolds. By employing advanced tensor calculus and 

differential geometry techniques, we have successfully 

achieved the following: 

• Decomposition theorems: We have derived a set of 

novel decomposition theorems that characterize the 

conditions under which a generalized recurrent 

tensor field can be expressed as a sum of simpler 

tensor fields. These theorems provide a deeper 

understanding of the structure and properties of 

these tensor fields. 

• Geometric insights: Our analysis has revealed new 

insights into the geometric properties of Finsler 

manifolds. Specifically, we have shown how the 

decomposition of generalized recurrent tensor fields 

can be used to explore the curvature and torsion of 

these manifolds. 

• Potential applications: The results obtained in this 

study have the potential to find applications in 

various fields, including physics and engineering. 

For instance, our findings could be useful in the 

development of new theories of gravity or in the 

study of materials with complex geometric 

structures. 

 

V. RECOMMENDATIONS 

Based on the findings of this research, we recommend the 

following avenues for future investigation: 

• Extension to other geometric structures: It would be 

interesting to explore the decomposition of generalized 

recurrent tensor fields in other geometric structures, such 

as Finslerian-Lagrangian geometries or generalized 

Finsler geometries. 

• Applications to specific physical theories: The results 

of this study could be applied to specific physical 

theories, such as general relativity or string theory. 

https://doi.org/10.20428/jst.v30i2.2664
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• Numerical simulations: Numerical simulations could 

be used to visualize and analyze the behavior of 

generalized recurrent tensor fields in various scenarios. 

• Development of new invariants: The decomposition 

theorems obtained in this study could be used to develop 

new invariants for characterizing the geometry of Finsler 

manifolds. 
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