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Abstract—The generalizations of hypergeometric and confluent
hypergeometric functions, as well as gamma and beta functions,
are the subject of numerous studies. The product of two Wright
functions is used in this paper to define a new type of
generalized beta function. Confluent hypergeometric functions
and new types of generalized Gauss functions are obtained with
the aid of the generalized beta function. Additionally, certain
characteristics of these functions are established, including
transform formulas, Mellin transforms, derivative formulas,
integral representations, and summation formulas.

Keywords — : Integral representations, summation formulas,
transformation formulas, beta function, Wright function, Gauss
hypergeometric  function, and confluent hypergeometric
functions.

L. INTRODUCTION

Some background information was provided in this section,
which is necessary for the remainder of the paper. Next, the
Chaudhry et al. defined confluent hypergeometric, Gauss
hypergeometric, and generalized beta functions were discussed.
The Wright function was utilized by Enes et al. to define the
confluent, Gauss, and generalized beta hypergeometric
functions respectively. Many researchers (see, for instance, ([1-
24] and [26-28]) and the references therein) defined new
generalizations of these functions that were motivated by the
work of Chaudhry et al.
Definition of the Gamma function I'(z): The definite integral
defines the function that Euler developed [25, 29] in order to
expand the factorials to values between the integers

[(z)=["ett=tdt |,

Re(z) > 0. (1.1)

Beta function of Euler B(x,y) (see [23, 25, 29]) is defined by:

1

B(x,y) = f t* (1 —-t)¥ 1 dt,

(Re(x)0> 0,Re(y) > 0). (1.2)
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The defined Gauss hypergeometric function and confluent
hypergeometric function (see [29]) as

n=0

(zl <D, (13)

( a,b,c €C and c#+0,-1,-2,-3,...),

where (6),, (6 € €) is the Pochhammer symbol (see [29]) is
defined by

r¢+n)

(&) = r' @)

(1.4)

As stated in [25], the confluent hypergeometric function is given
by

(Iz] < 1), (1.5)

TONETE
( bbceC and c#0,-1,-2,-3,...).

The extended gamma function for Re(x) > 0 was provided by
Chaudhry and Zubair [9] in 1994,

[ee]

Ip(x) = f t*Lexp (—t - g) dt.

0

(1.6)

1997, Chaudhry et al. [10] gave the extended beta function for
Re(x) > 0, Re(y) > 0, Re(p) > 0 as follows:

1

BP(x,y) = ftx'l (11—t texp (—

0

P
e t)) de. (1.7)

Using the newly extended beta function BP(6,, §,), Chaudhary
etal. [12] introduced an extended hypergeometric and confluent

https://journals.ust.edu/index.php/IST


https://journals.ust.edu/index.php/JST
mailto:salemalqasemi@yahoo.com

hypergeometric functions in 2004. These functions are defined
as:

- BP(b+n,c—b) z"
FP(a, b,c; Z) = ;(Q)n W ? ) (18)
(p=0, |z] <1, Re(c) > Re(b)>0),
and
_ - BP(b+n,c—b) z"
PP (b;c;z) = nz:;] “Bhc—b) al
(p=0, Re(c)>Re(b)>0). (1.9)

The new confluent hypergeometric functions, extended Gauss
functions, generalized gamma functions, and beta functions
were provided by Enes et al. [15] in 2022:

p

@B [ xe .
Yrleh (x) _fo 1 g, (a,ﬁ,—t—?) dt,  (1.10)
Re(x) >0, Re(p) >0,
(a.) _
qJBpa (x'y)_
! —p
x-1(1 — (V1 @ ( ;—) , 111
| era-o e (epgty)d @

Re(x) > 0, Re(y) >0, Re(p) >0,

where W, (+) is the Wright function which defined in [16] as:

w, ( ) = i 1 z"

oti(@ fiz) = 0F(an+,8) n! '
n=

where a,f € Cand Re(a) > —1, (1.12)

l*’Fp(‘)"ﬁ)(ot, b,c;z) =

) (1.13)

- l*'BIEO"B)(b +n,c—b) z"
Z@n B(b,c — b) nl
n=0
Re(c) > Re(b) > 0, Re(p) >0, Re(a) > -1,

‘PBéa’ﬁ)(b +n,c—b) z"
B(b,c — b) n!’

Yol (b;c;2) = Z

n=0
Re(c) > Re(b) > 0, Re(p) > 0, Re(a) > —1.

I1. An additional beta function extension
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In this paper, we use the product of two Wright functions#o define new

generalizations beta function, which defined by (1.12):
Definition 1. The new generalized beta functions is defined by

YBye (x,y) =

foltx_l (1—t)y 1! o¥s (a'ﬁ;_Tp) o1 (a,ﬁ;__q

— t) dt, (2.1)

Re(p) >0, Re(q) > 0,Re(x) > 0,Re(y) >0,

a,p ERS.

The new beta function generalizations are referred to as W -beta
functions.

Theorem 2.1.

Let Re(s) >0,Re(x +71)>0,Re(y +s) > 0,Re(p) >
0,Re(q) >,Re(a) > —1. Then,

W{WB,SZ’ﬁ)(x,Y):P —r,q— S} =
YBYP (x + 1,y +5) TP @) rP(s).  (22)
Proof: Applying the Mellin transform on (2.1), we have

933{‘1’31525)(36, y)ip—r,q— S} _ fooo fooo pr1 gs-1

X fol (1 -
)77t ¥y (Uf» B; _Tp) oY1 (a,ﬂ;l_—_qt) dp dq dt,

EUE{‘PB’SZ'B)(x, yip —1,9q— S} _ fol £¥-1 (1 — £)¥-1

[f Pt oW (a,ﬁ;_Tp) dp}

0

[ee]

{f q° ™ oWy (a'ﬂil___qt) dQ} dt,

0

(2.3)

q
@a-t)

substituting u =§ and v = in (2.3), we have

1

9)?{‘1’31(725)(96,}’);1? — 71,0 — s} = f px+r=1 (1- t)y"'s‘l
0

[oe]

U- u™ ™t W (a, B —u) du} {J’ vt (e, B _V)dv}' (24)

0 0
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by applying the definition of “’l‘é“‘ﬁ)(-) to (2.4) (see [15]), we
get the following desired result.

W{¥BP (x,y)ip — 7.4 — s}
_vpl@p)
="B,, (x+1y
+5) ‘Pl—'(a'ﬁ)(r) \Pr(a,ﬁ) (s).

Corollary 2.1. The following is the inverse Mellin transform of
the given equation:
‘PB(UCﬁ) 1 f‘51+ool f‘52+ool ‘PB(dﬁ’)(x +7,y+5)

271 Y81-c0i Y62-c0i

v @B ooy @) (gyp=rg=Sdr ds. (2.5)

Theorem 2.2. Integral representations of the following kinds
are valid:

T

q’Béi;'ﬁ)(x y) = 2f cos?* 1 9sin?v"19
0

x oW (a, B; —p sec?(9)) (W (a,B; —qcsc?(0))dh, (2.6)
(a.p) _
Lpolq (x'y) _fo (1+u)x+y Oq”1
(“ B;—p a +u)> o¥i(a, B —q(1 +w)du, 2.7)
\IJB(aﬁ)(x y) = (c— a)l x— yf (u—a)* 1((,‘ —u)¥- 1
onfenr G=5) o
(0{ B;—q (c —a)) du, (2.8)
(c—w
wp@h) = gi-x-y f 0
_T2p _~2q
X o1 (“’ﬁ’m> o1 (“'ﬁ' (1—u)) du.  (29)

Proof: For prove the formula (2.6), putting t = cos?8 =
dt = —2cosfsin6 do in(2.1), we have

s
2

() ‘*’Bz(,fzﬁ) = 2[ (cos?0)* 1 (1 — cos?6)¥1
0

X o¥1 (05,,3; %) o1 (a, B; ﬁ) cos 8 sin 6 d6,
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NI

_ . _ p
2x-1 2x—-1 . g
COoS 0 sin 0 ol'pl (a,ﬁ, > ) 01

ZZJ;

(= P —zrg) 0

NI

= 2] cos?* 19 sin?*710 W, (a, B; —p sec?(8)) (¥,
0

(a, B; —q csc?(6))d6.

Similarly, results (2.7), (2.8) and (2.9) can be proved by taking

u—-a 1+u

t=—and t=— in (2.1)
respectively. Thus, the proof of theorem 2.2 is completed.

the transformation t = — |
1+u

Theorem 2.3. According to this integral representation, the beta
function extension satisfies

yp(ap) yp(ap) —
By (x+Ly)+ "B, (x,y+1) =
wp(ap)
B, g (x,¥). (2.10)
Proof. If we look at the left hand side of (2.10), we have

(“ﬁ)(x+ 1,y) + l*’B(D‘ﬁ)(x,y+ 1)

= fol{tx‘l(l —t)Y

_Tp) o1 (0(,,3; 1

+e5(1- )77 ¥ (o 1—_t) dt
= YBy" (6, ).

Theorem 2.4. Let Re(x) >0, Re(y) <1, Re(p) >0, Re(a) > —1.
Then,

YRR (x,1—y) = Z(y)“ YRR (x +n,1).  (2.11)

Proof: From (2.1), we have

VB 1-y) = [ (1 -
07 oW (@8 2) oW (a ;L) dt

applying the theorem of generalized binomials

(1—t)_y=z%t”. lt] <1,
n=0

https://journals.ust.edu/index.php/IST


https://journals.ust.edu/index.php/JST

We obtain

WBI%B) (x,1—y)

_ Z On pren=t 3, (a,52) o9, (a5 e

n!

Using (2.1) and switching the order of summation and
integration in the above equation now demonstrates the
intended outcome.

Theorem 2.5. According to the following infinite summation
formulas, the beta function extension is satisfied:

[ee)

wp(ap) _ wp(ap)
By, (x,y) = Z By, (x+ny+1).

n=0

(2.12)

Proof. Changing the series representation that follows in (2.1)

[oe]

Q- 1t=01- t)yz t"

n=0

(Il < 1),

we obtain

1
By (6, 1-y) = [ -
)Y T t"TFTL Wy (a'ﬁ; __tp) o1 (“:.Bil___qt) at,
the desired outcome can be obtained by utilizing (2.1) and
switching the order of integration and summation in the above

equation.
Theorem 2.6. The relationship described below is accurate.

¥BEB (x, y) (x,y) =

n
n
Z (k) LI’Bllgf)fl’ﬁ)(x,y)(x +ky+n—k). neN, (2.13)
k=0

Proof. The mathematical induction on (n € N;) is used in the
following way to prove (2.13).
Equation (2.13) obviously holds for n = 0.

When n = 0, we get:

l*'B;f’fl'ﬁ)(x +1,y) + ‘PBIEZ'B)(x,y +1)

= fl{t" 1-t)rt

+ o= %) W, (a,ﬁ;_Tp) o1 (0(, B; 1—__qt) dt,
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= fl T -t Yt
0
+ (0} o (@ f5=F) o (whiT) de,

=fy =07 W (L) oW (e L) dt =
wB(a.ﬁ)(x ).
b4 !

Consequently, for n = 1, the equation (2.13) is valid.
By carrying out this procedure for every (n € Ng),we
eventually arrive at the required relation (2.13)

I11. Novel confluent hypergeometric and generalized Gauss
functions

New generalized Gauss and confluent hypergeometric functions
were introduced, along with some of their properties, in this
section.

Definition 2. For Re(b) >0 , Re(p) >0 , Re(a)> -1,
respectively, the new generalized Gauss and confluent
hypergeometric functions are defined by

y - (a,B) L) —
Eyq (a,b,c;z) =

i(a) szgz.ﬁ)(b +n,c—b) i 1)
0 " B(b! c— b) n! ’ '
n=
and
wp(ap)
wa @By, ..\ _ T Bpg (b+nc—b) zn
Ppq (Bi62) =Xnio —poemmy  w (3.2)

. (a,p) . i
We call *F,;"’(ab,c;z) as ¥ -Gauss hypergeometric
function and “’d)éf‘f) (b;c; z) as
Y -confluent hypergeometric function.

IV. Extended hypergeometric functions
integrally

Theorem 4.1. The integral representation of the extended
hypergeometric is as follows:

represented

1

\VF(“'B) ,b, ; —
ba (@D62) =Fas

1
X J- th1 (1 — )P —2t)7 ZW,
0

(@s=F) o (apir)de.

— (4.1)

Proof. By using (2.1) in (3.1), we have

Journal of Science
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1
B(b,c —b)

i@n ft a
n=0 0

- t)c_b_l o1 (a,[)’;Tp) o1 (a'ﬁil_—_qt) dt 2—1;,

i (ap) . =
Fp,q (al bl (oA Z) -

1
y(ap) ) — =
Fp’q (a, b: (oS Z) B(b; c— b)
1
Xf tb—l (1
0
N _, iy (zt)"
_t)c b-1 01}11 (a’ﬂ;T) 0‘{’1 (a'ﬁ:l __t) dtZ(a)n o’
n=0 '
‘{—'F(d.ﬁ)(a b,c;z) = ;
pq 5O B(b,c — b)
1
xf th-1 (1
0
_ +\¢—b-1 _ -a __p __q
D 1 =207 oW (@ fi—) o (afig—y) de.

Theorem 4.2. The integral representations listed below are true:

llJFp("fl’ﬁ)(a, b,c;z) = —

fol w1+ w)* (1 —-u(l -

B(b,c—b)
T))_a
S 21 (a,ﬁ: —@> oV (@, B;—q (1 +w)du, (4.2)

Y (ap) c ) =
Fp,q (al b! c; Z) -

T
2
2 (sin 8)?~1(cos §)%c—2b-1
B(b,c — b) (1 —tsin%20)e
0

(1 —2zsin?20)™% W, (a,B; —psin?0) ¥,
(a,B;—qcsc?6)do (4.3)
(a@.p) ) —
‘*’Fp,q (a,b,c;z) =

2 [ (sinh 0)20~1(cosh §)2¢~20+1
B(b,c —b) (cosh2 @ — tsinh? §)2
0
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o (a, B; —p coth? 8) W, (a,B; —qcosh?8)do (4.4)
l*’Fp(,';’B) (a,b,c;z) =
21+a—c fl (1 N u)b—1(1 B u)c—b—l
B(b,c—b)J)_,;
» 2
(2 - Z(l + u)) Oqjl ((X,ﬁ; -p m) Ol'pl
2
B —q — ) du. 4.5
(e =0 =) (4.5)
Proof. By substituting ¢ =—, t =sin?6 , t =tanh?6

1+u

X in (3.1) respectively, we get the desired

and t =—
2

representations (4.2)-(4.5).

Subsequently, we present integral representations of the
extended confluent hypergeometric function.

Theorem 4.3.

1
@B p. ) =
g (bi62) = 5

) i o -

% fo thin=1 (1 — ) Plexp(zt) W, (a"B;Tp) o1

(e.p:22)at, (4.6)

and

wg @y, . __ exp()
Pri (b6 =5 h)

1 _
X f thin=1 (1 — ) Plexp(—2zt) W, (a,ﬁ;Tp) oy
0

(. 1_—_qt) dt.

Proof. By using definition of extended beta function (2.1) in
(3.2), we have

4.7)

1

‘4’@(“;3) . —
va (b6 =gy

1
- —bh— —-p
f tb+n 1(1_t)c b-1 01};1 (a'ﬁ;T) Olpl
0

—q\ [ @O)"
;1—t)( nl )dt’

n=0

(e.p (4.8)

using

https://journals.ust.edu/index.php/IST
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Z e = exp(zt),

n=0

we obtain the proof of (4.6) in (4.8). By replacing t =1 —tin
(4.6), we can prove (4.7).

V. Differentiation  formulas for the extended
hypergeometric functions

We obtain differentiation formulas for the confluent and
extended hypergeometric functions in this section.

Theorem 5.1. The following equation is true:

di{ l”F(')“ﬁ)(a, b, c; z)} =
(@)n (b)n
T v (5.1)

Proof. When we differentiate (3.1) in relation to z, we obtain

F(“ﬁ)( +n,b+n;c+n;2).

d
w (aﬁ) .
dz{ F,q"'(a,b,c; Z)}
_ L*’B(‘7‘ﬁ)(b+n c—b) z"
_d_z( In B(b,c—b) n!’
= ¥YR@B(h 4 nc—b n-1
=) @, —2* ( ) T 52
B(b,c —b) (n—-1)!
changingnton + 1 in (5.2), we have
d
Sl (a.li) . —
dz{ E, (a, b,c,z)} =
- WB(“B)(b+nc—b)z 53
Z(a)”+1 B(b,c — b) nt’ (5.3)
since
B(b,c — b) =%B(b+ 1,c —b). (5.4)
Applying (5.4) in (5.3), we get
d
Y w (a,ﬁ) . —
dz{ E, (a,b,c; Z)} =
abw 1 l*'(aﬁ)(b+n+1c—b) z"
_Z(” T BT W
ab y o (a.p)
= Eyg"’(a+1,b+1¢c+1;2), (5.5)
again differentiating (5.5) with respect to z, we obtain
2
(a.p) . —
e Z{WF a (a,b,c,z)} =
+1)B+1
@+rHb+D YECP (@ +2,b+2c+22),  (5.6)

(c+1)
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continually going up to n times, we achieve the desired
outcome.
Theorem 5.2. The formula shown below is valid:
d‘n
w (a ﬁ) o —
dZn { q) (bl c; Z)} -
(B)n
(5.7)
(©n
Proof. We obtain desired result by using the similar procedure
as in theorem 5.1.

¢(aﬁ)(b+n c+n; z).

V1. Mellin transform of extended hypergeometric functions.
Here, we obtain the Mellin transformation of the confluent and
extended hypergeometric functions (3.1) and (3.2) through a
series of calculations.

Theorem 6.1. The extended hypergeometric function possesses
the following Mellin transform:

ED?{WF(“'B)(a b,c;z);p —>71,q — s} =
@By Y r @B () B(b + 7, c+ 5 — b)
B(b,c — b)
X JFi(a,b+71;c+r+s;2) (6.1)
Proof. By applying the Mellin transform to both sides of
equation (4.1), we obtain:

?IJ?{‘PFp(";Jﬁ)(a,b,c;z);p—>r,q_>s}=
1 © roo _ L -
B(b,c—b)fo fo p’ 1 q° 1 xf th 1(1—t)c b 1(1_

207 ¥ (B F) o (@ pirt)dedp da.

By changing the sequence of integration in the aforementioned
equation, we obtain.

W{WF,J(Z";)(a,b,C;Z);p—>r,q—>5}
:¥J1tb+n—1 (1
B(b,c—b) J,
[ee] Zn
-b-1
-0 Z(a)n;
r— —-p
XUP 1()Wl a,pB; )dp}
0
qu- ¥, (a,B;-—) dq{ dt.
0of1 ’ !1_t
0

6.2)

Journal of Science
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(6.3)

{J- q—s ¥; (a,ﬁ;l_—_qt) dq]
0

in (6.3) and integral, we get

Putting u =

Up—»r o (.5 =0) dp}
0

[ee)

U a—s o (ahi—r) dq}

0
=t"(1— t)s‘l—'l—-(aﬁ)(r) \Pr(a,ﬂ)(s)’

Utilizing the equation in (6.2), we arrive at:

%{wFéz’ﬁ)(a,b.c;Z):p —7,q —>S}

TP @) 1P () B(b +1,c +5 — b)
h B(b,c — b)

X JFi(a,b+r; c+r+s;2).

Thermo 6.2. The following conclusion is valid:

q’Fp(Z’ﬁ Xa,b,c:2)
Y1+ico yy+ico
1
— wp@p) .y wrlap)
@r02B(b,c — b) | () ")

Y1—i yp—ico

X B(b+r,c+s—b),F

(a,b+r;c+r+s;2)p™" q °drds. (6.4)

Proof. By applying the inverse Mellin transform to both sides
of equation (6.1), we arrive at the desired conclusion.
Theorem 6.3. The extended confluent hypergeometric function
possesses the following Mellin transform:

EUE{WCDI(;‘,;B)(I); c;z);p—71,q— s}
P ) 1P () B(b +1,c +5 - b)
B B(b,c — b)
X®(b+r;c+r+s;2). (6.5)
Proof. By carrying out comparable operations to those in the

Theorem 6.1 proof, the intended outcome is achieved.
Theorem 6.4. The following result holds true;

1

‘P(D(arﬁ) . —
va 062 = G E = b
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Y1+io yy+ico

f f Yr@ @) Y@ ($)B(+r,c + s — b)

y1—ioo yp—ic

XO(b+r;c+r+s;z2)p"q  drds,

(Y71 >0). (6.6)

Proof. By performing the inverse Mellin transform on both
sides on (6.3), we obtain the necessary outcome.

VI1I. Summation and transformation formulas

Here, we derive the transformation and summation formulas for
the confluent and extended hypergeometric functions,
respectively:

Theorem 7.1. This transformation is true for extended
hypergeometric function for p,q,a,8 > 0:
Z
"R @ b,ci2) = 1= EGY (a,b,c7—), (7.1)

where |arg(1 —2)| < m.

Proof. Replacing z by (1 —2z) in (4.1), we get the desired
result.

Theorem 7.2. This transformation is true for extended
hypergeometric function for p,q,a,8 > 0:

lVd)fflf)(b; c;z) = exp(z) q’CIJIg‘ZB)(C —b;c;—2), (7.2)

where |arg(1 —2)| < m.

Proof. We can easily determine the desired outcome from (4.6)
and (4.7).
Theorem 7.3. The summation formula shown below is true:

“’Blg'afiﬁ)(b, c—a—>b)

¥ p@h) ,b;c;1) = )
va (@Dic;1) B(b,c —b)

(7.3)

where p,g =0, a,8>0 and R(c—a—-b)>0.
Proof. Taking z = 1 in (4.1), we have

1

LPF(W'B) -1) =
p‘q (a’ b’ C’ ) B(b’ C — b)

1
XJ- tb_l (1 _ t)c—a—b—l 0[}11
0
—-p —q
(@si=) o (wpir=s)ds (7.4)
The desired outcome can be obtained by solving the above
equation using definition (2.1).
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