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A New Extension of Extended Beta, Hypergeometric and confluent 

functions by using the product of two Wright Functions and its Applications 

Dr. Salem Saleh Alqasemi Barahmah 

Aden University, 

 Aden, Yemen. 

salemalqasemi@yahoo.com

Abstract—The generalizations of hypergeometric and confluent 

hypergeometric functions, as well as gamma and beta functions, 

are the subject of numerous studies. The product of two Wright 

functions is used in this paper to define a new type of 

generalized beta function. Confluent hypergeometric functions 

and new types of generalized Gauss functions are obtained with 

the aid of the generalized beta function. Additionally, certain 

characteristics of these functions are established, including 

transform formulas, Mellin transforms, derivative formulas, 

integral representations, and summation formulas. 

Keywords — : Integral representations, summation formulas, 

transformation formulas, beta function, Wright function, Gauss 

hypergeometric function, and confluent hypergeometric 

functions. 

I. INTRODUCTION 

Some background information was provided in this section, 

which is necessary for the remainder of the paper. Next, the 

Chaudhry et al. defined confluent hypergeometric, Gauss 

hypergeometric, and generalized beta functions were discussed. 

The Wright function was utilized by Enes et al. to define the 

confluent, Gauss, and generalized beta hypergeometric 

functions respectively. Many researchers (see, for instance, ([1-

24] and [26-28]) and the references therein) defined new 

generalizations of these functions that were motivated by the 

work of Chaudhry et al. 

Definition of the Gamma function 𝛤(𝑧): The definite integral 

defines the function that Euler developed [25, 29] in order to 

expand the factorials to values between the integers 

𝛤(𝑧) = ∫ 𝑒−𝑡  𝑡𝑧−1∞

0
 𝑑𝑡      ,     𝑅𝑒(𝑧) > 0. (1.1)  

Beta function of Euler   𝐵(𝑥, 𝑦) (see [23, 25, 29]) is defined by: 

𝐵(𝑥, 𝑦) = ∫ 𝑡𝑥−1 (1 − 𝑡)𝑦−1

1

0

 𝑑𝑡,

(𝑅𝑒(𝑥) >  0, 𝑅𝑒(𝑦) >  0). (1.2)

 

The defined Gauss hypergeometric function and confluent 

hypergeometric function (see [29]) as 

𝐹2 1(𝑎, 𝑏; 𝑐; 𝑧) = ∑
(𝑎)𝑛(𝑏)𝑛

(𝑐)𝑛

∞

𝑛=0

 
𝑧𝑛

𝑛!
,    (|𝑧| < 1), (1.3) 

(   𝑎, 𝑏, 𝑐 ∈ ℂ   𝑎𝑛𝑑  𝑐 ≠ 0  , −1, −2, −3, … ), 

where (𝛿)𝑛 (𝛿 ∈ ℂ) is the Pochhammer symbol (see [29]) is 

defined by 

(𝛿)𝑛 =
𝛤(𝛿 + 𝑛)

𝛤(𝛿)
 . (1.4) 

As stated in [25], the confluent hypergeometric function is given 

by 

Φ11 (b; c; z) = ∑
(b)n

(c)n

∞

n=0

 
zn

n!
 ,    (|z| < 1), (1.5) 

(   𝑏, 𝑐 ∈ ℂ   𝑎𝑛𝑑  𝑐 ≠ 0  , −1, −2, −3, … ). 

The extended gamma function for 𝑅𝑒(𝑥) > 0 was provided by 

Chaudhry and Zubair [9] in 1994.  

Γ𝑃(𝑥) = ∫ 𝑡𝑥−1

∞

0

𝑒𝑥𝑝 (−𝑡 −
𝑝

𝑡
)  𝑑𝑡. (1.6) 

1997, Chaudhry et al. [10] gave the extended beta function for 

𝑅𝑒(𝑥) > 0,  𝑅𝑒(𝑦) > 0, 𝑅𝑒(𝑝) > 0 as follows: 

𝐵𝑝(𝑥, 𝑦) = ∫ 𝑡𝑥−1 (1 − 𝑡)𝑦−1 𝑒𝑥𝑝 (−
𝑝

𝑡(1 − 𝑡)
)

1

0

 𝑑𝑡. (1.7) 

Using the newly extended beta function  𝐵𝑝(𝛿1, 𝛿2), Chaudhary 

et al. [12] introduced an extended hypergeometric and confluent 
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hypergeometric functions in 2004. These functions are defined 

as:  

𝐹𝑝(𝑎, 𝑏, 𝑐; 𝑧) = ∑(𝑎)𝑛  
𝐵𝑝(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=0

  
𝑧𝑛

𝑛!
 , (1.8) 

                                      

(𝑝 ≥ 0 ,   |𝑧| < 1 ,    𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0), 

and 

Φ𝑝(𝑏; 𝑐; 𝑧) = ∑  
𝐵𝑝(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=0

  
𝑧𝑛

𝑛!
,        

(𝑝 ≥ 0 ,      𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0). (1.9)

 

The new confluent hypergeometric functions, extended Gauss 

functions, generalized gamma functions, and beta functions 

were provided by Enes et al. [15] in 2022: 

Γ 
Ψ

𝑝
(𝛼,𝛽)

(𝑥) = ∫ 𝑡𝑥−1
∞

0

Ψ10 (𝛼, 𝛽; −𝑡 −
𝑝

𝑡
)  𝑑𝑡, (1.10) 

𝑅𝑒(𝑥) > 0,   𝑅𝑒(𝑝) > 0, 

𝐵 
Ψ

𝑝
(𝛼,𝛽)

(𝑥, 𝑦) =

∫ 𝑡𝑥−1
1

0

(1 − 𝑡)𝑦−1 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡(1 − 𝑡)
) 𝑑𝑡, (1.11)

 

𝑅𝑒(𝑥) > 0,  𝑅𝑒(𝑦) > 0,   𝑅𝑒(𝑝) > 0, 

where  Ψ10 (∙) is the Wright function which defined in [16] as: 

 

Ψ10 (𝛼, 𝛽; 𝑧) = ∑
1

Γ(𝛼𝑛 + 𝛽)

∞

𝑛=0

 
𝑧𝑛

𝑛!
   ,

𝑤ℎ𝑒𝑟𝑒  𝛼, 𝛽 ∈ ℂ 𝑎𝑛𝑑 𝑅𝑒(𝛼) > −1, (1.12)

 

 𝐹 
Ψ

𝑝
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) =

∑(𝑎)𝑛  
 𝐵 
Ψ

𝑝
(𝛼,𝛽)

(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=0

  
𝑧𝑛

𝑛!
, (1.13)

 

𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0, 𝑅𝑒(𝑝) > 0, 𝑅𝑒(𝛼) > −1, 

 Φ 
Ψ

𝑝
(𝛼,𝛽)

(𝑏; 𝑐; 𝑧) = ∑  
 B 
Ψ

𝑝
(𝛼,𝛽)

(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=0

  
𝑧𝑛

𝑛!
, (1.14) 

𝑅𝑒(𝑐) > 𝑅𝑒(𝑏) > 0, 𝑅𝑒(𝑝) > 0, 𝑅𝑒(𝛼) > −1. 

II. An additional beta function extension 

In this paper, we use the product of two Wright functions to define new 

generalizations beta function, which defined by (1.12): 

Definition 1. The new generalized beta functions is defined by 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦) =

∫ 𝑡𝑥−1
1

0

(1 − 𝑡)𝑦−1 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑡
) 𝑑𝑡, (2.1)

 

   𝑅𝑒(𝑝) > 0, 𝑅𝑒(𝑞) > 0, 𝑅𝑒(𝑥) > 0 , 𝑅𝑒(𝑦) > 0,

𝛼, 𝛽 ∈ ℝ0
+ . 

The new beta function generalizations are referred to as Ψ -beta 

functions. 

Theorem 2.1.   

Let   𝑅𝑒(𝑠) > 0, 𝑅𝑒(𝑥 + 𝑟) > 0 , 𝑅𝑒(𝑦 + 𝑠) > 0 , 𝑅𝑒(𝑝) >

0, 𝑅𝑒(𝑞) >, 𝑅𝑒(𝛼) > −1. Then, 

𝔐 { 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦); 𝑝 ⟶ 𝑟 , 𝑞 ⟶ 𝑠} = 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥 + 𝑟, 𝑦 + 𝑠) Γ 
Ψ (𝛼,𝛽)

(𝑟) Γ 
Ψ (𝛼,𝛽)

(𝑠). (2.2) 

Proof: Applying the Mellin transform on (2.1), we have 

𝔐 { 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦); 𝑝 ⟶ 𝑟 , 𝑞 ⟶ 𝑠} = ∫ ∫ 𝑝𝑟−1∞

0

∞

0
 𝑞𝑠−1  

× ∫ 𝑡𝑥−11

0
(1 −

𝑡)𝑦−1 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1−𝑡
) 𝑑𝑝 𝑑𝑞 𝑑𝑡,               

𝔐 { 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦); 𝑝 ⟶ 𝑟 , 𝑞 ⟶ 𝑠} = ∫ 𝑡𝑥−11

0
(1 − 𝑡)𝑦−1  

{∫ 𝑝𝑟−1 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
)  𝑑𝑝

∞

0

}  

{∫ 𝑞𝑠−1 Ψ10 (𝛼, 𝛽;
−𝑞

1 − 𝑡
) 𝑑𝑞

∞

0

}  𝑑𝑡, (2.3) 

substituting  𝑢 =
𝑝

𝑡
  and 𝑣 =

𝑞

(1−𝑡)
 in (2.3), we have 

𝔐 { 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦); 𝑝 ⟶ 𝑟 , 𝑞 ⟶ 𝑠} = ∫ 𝑡𝑥+𝑟−1
1

0

(1 − 𝑡)𝑦+𝑠−1 

{∫ 𝑢𝑟−1 Ψ10 (𝛼, 𝛽; −𝑢) 𝑑𝑢

∞

0

} {∫ 𝑣𝑠−1 Ψ10 (𝛼, 𝛽; −𝑣)𝑑𝑣

∞

0

} , (2.4) 
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by applying the definition of  Γ 
Ψ

𝑝
(𝛼,𝛽)

(∙)  to (2.4) (see [15]), we 

get the following desired result. 

𝔐 { 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦); 𝑝 ⟶ 𝑟 , 𝑞 ⟶ 𝑠}

= 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥 + 𝑟, 𝑦

+ 𝑠) Γ 
Ψ (𝛼,𝛽)

(𝑟) Γ 
Ψ (𝛼,𝛽)

(𝑠). 

Corollary 2.1. The following is the inverse Mellin transform of 

the given equation: 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

=
1

2𝜋𝑖
∫ ∫ 𝐵 

Ψ
𝑝,𝑞
(𝛼,𝛽)

(𝑥 + 𝑟, 𝑦 + 𝑠) 
𝛿2+∞𝑖

𝛿2−∞𝑖

𝛿1+∞𝑖

𝛿1−∞𝑖
     

Γ 
Ψ (𝛼,𝛽)

(𝑟) Γ 
Ψ (𝛼,𝛽)

(𝑠)𝑝−𝑟𝑞−𝑠𝑑𝑟 𝑑𝑠. (2.5) 

Theorem 2.2. Integral representations of the following kinds 

are valid: 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦)  = 2 ∫ cos2𝑥−1 𝜃

𝜋
2

0

sin2𝑦−1 𝜃 

× Ψ10 (𝛼, 𝛽; −𝑝 sec2(𝜃)) Ψ10 (𝛼, 𝛽; −𝑞 csc2(𝜃))𝑑𝜃, (2.6) 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦) = ∫
𝑢𝑥−1

(1 + 𝑢)𝑥+𝑦

∞

0

 Ψ10

(𝛼, 𝛽; −𝑝 
(1 + 𝑢)

𝑢
) Ψ10 (𝛼, 𝛽; −𝑞(1 + 𝑢))𝑑𝑢 , (2.7)

 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦) = (𝑐 − 𝑎)1−𝑥−𝑦 ∫ (𝑢 − 𝑎)𝑥−1(𝑐 − 𝑢)𝑦−1𝑐

𝑎
   

 × Ψ10 (𝛼, 𝛽; −𝑝 
(𝑐 − 𝑎)

(𝑢 − 𝑎)
) Ψ10

(𝛼, 𝛽; −𝑞 
(𝑐 − 𝑎)

(𝑐 − 𝑢)
)   𝑑𝑢 , (2.8)

 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

= 21−𝑥−𝑦 ∫ (1 + 𝑢)𝑥−1(1 − 𝑢)𝑦−1
1

−1

 

× Ψ10 (𝛼, 𝛽;
−2𝑝

(1 + 𝑢)
) Ψ10 (𝛼, 𝛽;

−2𝑞

(1 − 𝑢)
)  𝑑𝑢 . (2.9) 

Proof: For prove the formula (2.6), putting 𝑡 = cos2 𝜃   ⇒

𝑑𝑡 = −2 cos 𝜃 sin 𝜃  𝑑𝜃  in (2.1), we have 

(𝑖)    𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

= 2 ∫ (cos2 𝜃)𝑥−1

𝜋
2

0

 (1 − 𝑐𝑜𝑠2𝜃)𝑦−1 

× Ψ10 (𝛼, 𝛽;
−𝑝

𝑐𝑜𝑠2𝜃
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑐𝑜𝑠2𝜃
) cos 𝜃 sin 𝜃 𝑑𝜃, 

= 2 ∫ cos2𝑥−1 𝜃

𝜋
2

0

 sin2𝑥−1 𝜃 Ψ10 (𝛼, 𝛽;
−𝑝

𝑐𝑜𝑠2𝜃
) Ψ10  

(𝛼, 𝛽;
−𝑞

1 − 𝑐𝑜𝑠2𝜃
) 𝑑𝜃, 

= 2 ∫ cos2𝑥−1 𝜃

𝜋
2

0

 sin2𝑥−1 𝜃  Ψ10 (𝛼, 𝛽; −𝑝 sec2(𝜃)) Ψ10  

(𝛼, 𝛽; −𝑞 csc2(𝜃))𝑑𝜃.              

Similarly, results (2.7), (2.8) and (2.9) can be proved by taking 

the transformation 𝑡 =
𝑢

1+𝑢
 ,   𝑡 =

𝑢−𝑎

𝑐−𝑎
   and  𝑡 =

1+𝑢

2
  in (2.1) 

respectively. Thus, the proof of theorem 2.2 is completed. 

Theorem 2.3. According to this integral representation, the beta 

function extension satisfies 

                         𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥 + 1, 𝑦) + 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦 + 1) =

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦). (2.10)
 

Proof. If we look at the left hand side of (2.10), we have 

 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥 + 1, 𝑦) + 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦 + 1) 

= ∫ {𝑡𝑥−1(1 − 𝑡)𝑦
1

0

+ 𝑡𝑥(1 − 𝑡)𝑦−1} Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑡
) 𝑑𝑡 

= 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦). 

Theorem 2.4. Let 𝑅𝑒(𝑥) > 0, 𝑅𝑒(𝑦) < 1, 𝑅𝑒(𝑝) > 0, 𝑅𝑒(𝛼) > −1. 

Then, 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 1 − 𝑦) = ∑
(𝑦)𝑛

𝑛!
 𝐵 

Ψ
𝑝,𝑞
(𝛼,𝛽)

(𝑥 + 𝑛, 1).

∞

𝑛=0

(2.11) 

Proof: From (2.1), we have  

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 1 − 𝑦) = ∫ 𝑡𝑥−11

0
(1 −

𝑡)−𝑦 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1−𝑡
) 𝑑𝑡,  

applying the theorem of generalized binomials 

(1 − 𝑡)−𝑦 = ∑
(𝑦)𝑛

𝑛!

∞

𝑛=0

𝑡𝑛,    |𝑡| < 1 ,   
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We obtain 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 1 − 𝑦)

= ∑
(𝑦)𝑛

𝑛!

∞

𝑛=0

𝑡𝑥+𝑛−1 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑡
) 𝑑𝑡.   

Using (2.1) and switching the order of summation and 

integration in the above equation now demonstrates the 

intended outcome. 

Theorem 2.5. According to the following infinite summation 

formulas, the beta function extension is satisfied: 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦) = ∑  𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥 + 𝑛, 𝑦 + 1).

∞

𝑛=0

(2.12) 

Proof. Changing the series representation that follows in (2.1) 

(1 − 𝑡)𝑦−1 = (1 − 𝑡)𝑦 ∑ 𝑡𝑛

∞

𝑛=0

              (|𝑡| < 1), 

we obtain 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 1 − 𝑦) = ∫ (1 −
1

0

𝑡)𝑦 ∑ 𝑡𝑛+𝑥−1 ∞
𝑛=0  Ψ10 (𝛼, 𝛽;

−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1−𝑡
) 𝑑𝑡 ,  

the desired outcome can be obtained by utilizing (2.1) and 

switching the order of integration and summation in the above 

equation. 

Theorem 2.6. The relationship described below is accurate. 

𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦)(𝑥, 𝑦) =

∑ (
𝑛
𝑘

) 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦)(𝑥 + 𝑘, 𝑦 + 𝑛 − 𝑘).

𝑛

𝑘=0

     𝑛 ∈ ℕ0 (2.13)
 

Proof. The mathematical induction on (𝑛 ∈ ℕ0) is used in the 

following way to prove (2.13).  

Equation (2.13) obviously holds for 𝑛 = 0. 

When 𝑛 = 0, we get: 

 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥 + 1, 𝑦) + 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦 + 1) 

= ∫ {𝑡𝑥 (1 − 𝑡)𝑦−1
1

0

+   𝑡𝑥−1 (1 − 𝑡)𝑦} Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑡
) 𝑑𝑡, 

= ∫  𝑡𝑥−1 (1 − 𝑡)𝑦−1{  𝑡
1

0

+ (−𝑡)} Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑡
) 𝑑𝑡, 

= ∫  𝑡𝑥−1 (1 − 𝑡)𝑦−11

0
Ψ10 (𝛼, 𝛽;

−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1−𝑡
) 𝑑𝑡 =

 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑥, 𝑦).  

Consequently, for 𝑛 = 1, the equation (2.13) is valid. 

By carrying out this procedure for every (𝑛 ∈ ℕ0), we 

eventually arrive at the required relation (2.13) 

III. Novel confluent hypergeometric and generalized Gauss 

functions 

New generalized Gauss and confluent hypergeometric functions 

were introduced, along with some of their properties, in this 

section. 

Definition 2. For 𝑅𝑒(𝑏) > 0  ,  𝑅𝑒(𝑝) > 0  ,  𝑅𝑒(𝛼) > −1, 

respectively, the new generalized Gauss and confluent 

hypergeometric functions are defined by 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) =

∑(𝑎)𝑛  
 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=0

  
𝑧𝑛

𝑛!
, (3.1)

 

and 

 Φ 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏; 𝑐; 𝑧) = ∑  
 B 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏+𝑛,𝑐−𝑏)

𝐵(𝑏,𝑐−𝑏)
∞
𝑛=0   

𝑧𝑛

𝑛!
, (3.2) 

We call  𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) as Ψ -Gauss hypergeometric 

function and  Φ 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏; 𝑐; 𝑧) as 

 Ψ -confluent hypergeometric function. 

IV. Extended hypergeometric functions represented 

integrally 

Theorem 4.1. The integral representation of the extended 

hypergeometric is as follows: 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) =
1

𝐵(𝑏, 𝑐 − 𝑏)
 

× ∫ 𝑡𝑏−1
1

0

(1 − 𝑡)𝑐−𝑏−1(1 − 𝑧𝑡)−𝑎 Ψ10

(𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑡
) 𝑑𝑡. (4.1)

 

Proof. By using (2.1) in (3.1), we have 
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 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) =
1

𝐵(𝑏, 𝑐 − 𝑏)
 

∑(𝑎)𝑛 ∫ 𝑡𝑏+𝑛−1
1

0

(1

∞

𝑛=0

− 𝑡)𝑐−𝑏−1 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑡
) 𝑑𝑡 

𝑧𝑛

𝑛!
, 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) =
1

𝐵(𝑏, 𝑐 − 𝑏)
 

× ∫ 𝑡𝑏−1
1

0

(1

− 𝑡)𝑐−𝑏−1 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑡
) 𝑑𝑡 ∑(𝑎)𝑛

(𝑧𝑡)𝑛

𝑛!
,

∞

𝑛=0

 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) =
1

𝐵(𝑏, 𝑐 − 𝑏)
 

× ∫ 𝑡𝑏−1
1

0

(1

− 𝑡)𝑐−𝑏−1(1 − 𝑧𝑡)−𝑎  Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑡
) 𝑑𝑡. 

Theorem 4.2. The integral representations listed below are true: 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) =
1

𝐵(𝑏,𝑐−𝑏)
 ∫ 𝑢𝑏−11

0
(1 + 𝑢)𝑎−𝑐(1 − 𝑢(1 −

𝜏))
−𝑎

  

×  Ψ10 (𝛼, 𝛽; −
𝑝(1 + 𝑢)

𝑢
) Ψ10 (𝛼, 𝛽; −𝑞 (1 + 𝑢))𝑑𝑢 , (4.2) 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) = 

2

𝐵(𝑏, 𝑐 − 𝑏)
 ∫

(sin 𝜃)2𝑏−1(cos 𝜃)2𝑐−2𝑏−1

(1 − 𝜏 sin2 𝜃)𝑎

𝜋
2

0

 

                             

(1 − 𝑧 sin2 𝜃)−𝑎  Ψ10 (𝛼, 𝛽; −𝑝 sin2 𝜃) Ψ10

(𝛼, 𝛽; −𝑞 csc2 𝜃 )𝑑𝜃 (4.3)
 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) = 

2

𝐵(𝑏, 𝑐 − 𝑏)
 ∫

(sinh 𝜃)2𝑏−1(cosh 𝜃)2𝑐−2𝑏+1

(cosh2 𝜃 − 𝜏 sinh2 𝜃)𝑎

∞

0

 

                                                 

Ψ10 (𝛼, 𝛽; −𝑝 coth2 𝜃) Ψ10 (𝛼, 𝛽; −𝑞 cosh2 𝜃 )𝑑𝜃 (4.4) 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) = 

21+𝑎−𝑐

𝐵(𝑏, 𝑐 − 𝑏)
∫ (1 + 𝑢)𝑏−1(1 − 𝑢)𝑐−𝑏−1

1

−1

 

(2 − 𝑧(1 + 𝑢))
−𝑎

Ψ10 (𝛼, 𝛽; −𝑝 
2

(1 + 𝑢)
) Ψ10

(𝛼, 𝛽; −𝑞 
2

(1 − 𝑢)
) 𝑑𝑢. (4.5)

 

Proof. By substituting   𝑡 =
𝑢

1+𝑢
 ,  𝑡 = sin2 𝜃  ,  𝑡 = tanh2 𝜃  

and 𝑡 =
1+𝑢

2
  in (3.1) respectively, we get the desired 

representations (4.2)-(4.5). 

Subsequently, we present integral representations of the 

extended confluent hypergeometric function. 

Theorem 4.3. 

 Φ 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏; 𝑐; 𝑧) =
1

𝐵(𝑏, 𝑐 − 𝑏)
 

× ∫ 𝑡𝑏+𝑛−11

0
(1 − 𝑡)𝑐−𝑏−1 exp(𝑧𝑡)  Ψ10 (𝛼, 𝛽;

−𝑝

𝑡
) Ψ10

(𝛼, 𝛽;
−𝑞

1−𝑡
) 𝑑𝑡, (4.6)

and 

 Φ 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏; 𝑐; 𝑧) =
exp(𝑧)

𝐵(𝑏, 𝑐 − 𝑏)
 

× ∫ 𝑡𝑏+𝑛−1
1

0

(1 − 𝑡)𝑐−𝑏−1 exp(−𝑧𝑡) Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10

(𝛼, 𝛽;
−𝑞

1 − 𝑡
) 𝑑𝑡. (4.7)

 

Proof. By using definition of extended beta function (2.1) in 

(3.2), we have 

 Φ 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏; 𝑐; 𝑧) =
1

𝐵(𝑏, 𝑐 − 𝑏)
 

∫ 𝑡𝑏+𝑛−1
1

0

(1 − 𝑡)𝑐−𝑏−1 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10  

(𝛼, 𝛽;
−𝑞

1 − 𝑡
) (∑

(𝑧𝑡)𝑛

𝑛!
 

∞

𝑛=0

) 𝑑𝑡, (4.8) 

using              
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∑
(𝑧𝑡)𝑛

𝑛!
 

∞

𝑛=0

= exp(𝑧𝑡), 

we obtain the proof of (4.6) in (4.8). By replacing  𝑡 = 1 − 𝑡 in 

(4.6), we can prove (4.7). 

V. Differentiation formulas for the extended 

hypergeometric functions 

We obtain differentiation formulas for the confluent and 

extended hypergeometric functions in this section. 

Theorem 5.1. The following equation is true: 

 

𝑑

𝑑𝑧
{ 𝐹 

Ψ
𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧)} =

(𝑎)𝑛 (𝑏)𝑛

(𝑐)𝑛

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎 + 𝑛, 𝑏 + 𝑛; 𝑐 + 𝑛; 𝑧). (5.1)
 

Proof. When we differentiate (3.1) in relation to 𝑧, we obtain 

𝑑

𝑑𝑧
{ 𝐹 

Ψ
𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧)}

=
𝑑

𝑑𝑧
∑(𝑎)𝑛  

 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=0

  
𝑧𝑛

𝑛!
, 

= ∑(𝑎)𝑛  
 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=1

  
𝑧𝑛−1

(𝑛 − 1)!
, (5.2) 

 

changing 𝑛 to 𝑛 + 1 in (5.2), we have 

𝑑

𝑑𝑧
{ 𝐹 

Ψ
𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧)} =

∑(𝑎)𝑛+1  
 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏 + 𝑛, 𝑐 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)

∞

𝑛=1

  
𝑧𝑛

𝑛!
, (5.3)

 

 

since 

𝐵(𝑏, 𝑐 − 𝑏) =
𝑐

𝑏
 𝐵(𝑏 + 1, 𝑐 − 𝑏). (5.4) 

         

Applying (5.4) in (5.3), we get 

𝑑

𝑑𝑧
{ 𝐹 

Ψ
𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧)} = 

𝑎 𝑏

𝑐
∑(𝑎 + 1)𝑛  

 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏 + 𝑛 + 1, 𝑐 − 𝑏)

𝐵(𝑏 + 1, 𝑐 − 𝑏)

∞

𝑛=1

  
𝑧𝑛

𝑛!
 

=
𝑎 𝑏

𝑐
 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎 + 1, 𝑏 + 1; 𝑐 + 1; 𝑧), (5.5) 

again differentiating (5.5) with respect to 𝑧, we obtain 

𝑑2

𝑑𝑧2
{ 𝐹 

Ψ
𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧)} =

(𝑎 + 1) (𝑏 + 1)

(𝑐 + 1)
 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎 + 2, 𝑏 + 2; 𝑐 + 2; 𝑧), (5.6)

 

continually going up to 𝑛 times, we achieve the desired 

outcome. 

Theorem 5.2. The formula shown below is valid: 

𝑑𝑛

𝑑𝑧𝑛
{ Φ 

Ψ
𝑝,𝑞
(𝛼,𝛽)

(𝑏; 𝑐; 𝑧)} = 

 (𝑏)𝑛

(𝑐)𝑛

 Φ 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏 + 𝑛; 𝑐 + 𝑛; 𝑧). (5.7) 

Proof. We obtain desired result by using the similar procedure 

as in theorem 5.1. 

 

VI. Mellin transform of extended hypergeometric functions. 

Here, we obtain the Mellin transformation of the confluent and 

extended hypergeometric functions (3.1) and (3.2) through a 

series of calculations. 

Theorem 6.1. The extended hypergeometric function possesses 

the following Mellin transform: 

 

𝔐 { 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧); 𝑝 ⟶ 𝑟 , 𝑞 ⟶ 𝑠} = 

Γ 
Ψ (𝛼,𝛽)

(𝑟) Γ 
Ψ (𝛼,𝛽)

(𝑠) 𝐵(𝑏 + 𝑟, 𝑐 + 𝑠 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)
 . 

× 𝐹12 (𝑎 , 𝑏 + 𝑟;  𝑐 + 𝑟 + 𝑠; 𝑧) (6.1) 

Proof. By applying the Mellin transform to both sides of 

equation (4.1), we obtain: 

𝔐 { 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧); 𝑝 ⟶ 𝑟 , 𝑞 ⟶ 𝑠} =

1

𝐵(𝑏,𝑐−𝑏)
∫ ∫ 𝑝𝑟−1  𝑞𝑠−1∞

0

∞

0
× ∫ 𝑡𝑏−11

0
(1 − 𝑡)𝑐−𝑏−1(1 −

𝑧𝑡)−𝑎  Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1−𝑡
) 𝑑𝑡 𝑑𝑝 𝑑𝑞.  

By changing the sequence of integration in the aforementioned 

equation, we obtain. 

𝔐 { 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧); 𝑝 ⟶ 𝑟 , 𝑞 ⟶ 𝑠}

=
1

𝐵(𝑏, 𝑐 − 𝑏)
 ∫ 𝑡𝑏+𝑛−1

1

0

(1

− 𝑡)𝑐−𝑏−1 ∑(𝑎)𝑛

∞

𝑛=0

𝑧𝑛

𝑛!
 

× {∫ 𝑝𝑟−1 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
)  𝑑𝑝

∞

0

}  

 {∫  𝑞𝑠−1 Ψ10 (𝛼, 𝛽;
−𝑞

1 − 𝑡
)  𝑑𝑞

∞

0

}  𝑑𝑡.             (6.2) 

 

In  
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{∫ 𝑝 ⟶ 𝑟 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
)  𝑑𝑝

∞

0

}

  {∫  𝑞 ⟶ 𝑠 Ψ10 (𝛼, 𝛽;
−𝑞

1 − 𝑡
)  𝑑𝑞

∞

0

} (6.3)

 

Putting     𝑢 =
𝑝

𝑡
  and  𝑣 =

𝑞

(1−𝑡)
   in  (6.3) and integral, we get 

 

{∫ 𝑝 ⟶ 𝑟 Ψ10 (𝛼, 𝛽;
−𝑝

𝑡
)  𝑑𝑝

∞

0

} 

{∫  𝑞 ⟶ 𝑠 Ψ10 (𝛼, 𝛽;
−𝑞

1 − 𝑡
)  𝑑𝑞

∞

0

} 

= 𝑡𝑟 (1 − 𝑡)𝑠 Γ 
Ψ (𝛼,𝛽)

(𝑟) Γ 
Ψ (𝛼,𝛽)

(𝑠),                 

Utilizing the equation in (6.2), we arrive at: 

𝔐 { 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧); 𝑝 ⟶ 𝑟 , 𝑞 ⟶ 𝑠}

=
Γ 

Ψ (𝛼,𝛽)
(𝑟) Γ 

Ψ (𝛼,𝛽)
(𝑠) 𝐵(𝑏 + 𝑟, 𝑐 + 𝑠 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)
 

× 𝐹12 (𝑎 , 𝑏 + 𝑟;  𝑐 + 𝑟 + 𝑠; 𝑧). 

Thermo 6.2. The following conclusion is valid: 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧)  

=
1

(2𝜋𝑖)2𝐵(𝑏, 𝑐 − 𝑏)
  ∫ ∫ Γ 

Ψ (𝛼,𝛽)
(𝑟) Γ 

Ψ (𝛼,𝛽)
(𝑠) 

𝛾2+𝑖∞

𝛾2−𝑖∞

𝛾1+𝑖∞

𝛾1−𝑖∞

 

×  𝐵(𝑏 + 𝑟, 𝑐 + 𝑠 − 𝑏) 𝐹12

(𝑎 , 𝑏 + 𝑟;  𝑐 + 𝑟 + 𝑠; 𝑧)𝑝−𝑟 𝑞−𝑠 𝑑𝑟 𝑑𝑠. (6.4)
 

Proof. By applying the inverse Mellin transform to both sides 

of equation (6.1), we arrive at the desired conclusion. 

Theorem 6.3. The extended confluent hypergeometric function 

possesses the following Mellin transform: 

𝔐 { Φ 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏; 𝑐; 𝑧); 𝑝 ⟶ 𝑟 , 𝑞 ⟶ 𝑠} 

=
Γ 

Ψ (𝛼,𝛽)
(𝑟) Γ 

Ψ (𝛼,𝛽)
(𝑠) 𝐵(𝑏 + 𝑟, 𝑐 + 𝑠 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)
 

× Φ( 𝑏 + 𝑟;  𝑐 + 𝑟 + 𝑠; 𝑧). (6.5) 

Proof. By carrying out comparable operations to those in the 

Theorem 6.1 proof, the intended outcome is achieved. 

Theorem 6.4. The following result holds true; 

 Φ 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏; 𝑐; 𝑧) =
1

(2𝜋𝑖)2𝐵(𝑏, 𝑐 − 𝑏)
 

  ∫ ∫ Γ 
Ψ (𝛼,𝛽)

(𝑟) Γ 
Ψ (𝛼,𝛽)

(𝑠)𝐵(+𝑟, 𝑐 + 𝑠 − 𝑏) 

𝛾2+𝑖∞

𝛾2−𝑖∞

𝛾1+𝑖∞

𝛾1−𝑖∞

 

× Φ( 𝑏 + 𝑟;  𝑐 + 𝑟 + 𝑠; 𝑧)𝑝−𝑟 𝑞−𝑠 𝑑𝑟 𝑑𝑠 ,

  (𝛾1, 𝛾1 > 0). (6.6)
 

Proof. By performing the inverse Mellin transform on both 

sides on (6.3), we obtain the necessary outcome. 

VII. Summation and transformation formulas 

Here, we derive the transformation and summation formulas for 

the confluent and extended hypergeometric functions, 

respectively: 

Theorem 7.1. This transformation is true for extended 

hypergeometric function for  𝑝, 𝑞, 𝛼, 𝛽 > 0 : 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 𝑧) = (1 − 𝑧)−𝑎  𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐;
𝑧

1 − 𝑧
) , (7.1) 

where |arg(1 − 𝑧)| < 𝜋 . 

Proof. Replacing  𝑧 by (1 − 𝑧)  in (4.1), we get the desired 

result. 

Theorem 7.2. This transformation is true for extended 

hypergeometric function for  𝑝, 𝑞, 𝛼, 𝛽 > 0 : 

 Φ 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏; 𝑐; 𝑧) = exp(𝑧)  Φ 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑐 − 𝑏; 𝑐; −𝑧), (7.2) 

where |arg(1 − 𝑧)| < 𝜋 . 

Proof. We can easily determine the desired outcome from (4.6) 

and (4.7). 

Theorem 7.3. The summation formula shown below is true: 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏; 𝑐; 1) =
 𝐵 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑏, 𝑐 − 𝑎 − 𝑏)

𝐵(𝑏, 𝑐 − 𝑏)
, (7.3) 

where  𝑝, 𝑞 ≥ 0  ,    𝛼, 𝛽 > 0     𝑎𝑛𝑑    ℜ(𝑐 − 𝑎 − 𝑏) > 0. 

Proof. Taking 𝑧 = 1 in (4.1), we have 

 𝐹 
Ψ

𝑝,𝑞
(𝛼,𝛽)

(𝑎, 𝑏, 𝑐; 1) =
1

𝐵(𝑏, 𝑐 − 𝑏)
 

× ∫ 𝑡𝑏−1
1

0

(1 − 𝑡)𝑐−𝑎−𝑏−1 Ψ10

(𝛼, 𝛽;
−𝑝

𝑡
) Ψ10 (𝛼, 𝛽;

−𝑞

1 − 𝑡
) 𝑑𝑡, (7.4)

 

The desired outcome can be obtained by solving the above 

equation using definition (2.1). 
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