

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

https://doi.org/10.20428/jst.v30i2.2435

14

``

Fully Autonomous Wheelchair for Indoor
Mobility: A Hybrid Approach to Mapping and

Navigation with ROS

Received: 02/10/2024

Revised: 11/10/2024

Accepted: 7/12/2024

© 2025 University of Science and Technology, Aden, Yemen. This article can

 be distributed under the terms of the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

حسب اليمن. يمكن إعادة استخدام المادة المنشورة ،المركز الرئيس عدن جامعة العلوم والتكنولوجيا، © 2025
 شريطة الاستشهاد بالمؤلف والمجلة. الإبداعي المشاع مؤسسةرخصة

Yaseen Abduljalil Sultan Al-Qadasi (1,*)
Hatem Al-Dois (2)
Mohammed Mohammed AlObaidi (3)
Ali Abdullah Qayid (3)
Fareed Ameen Al-Abbassi (3)
Emad Abdulwahed Saleh (3)

 ــ ـ

1 Teaching Assistant of Robotics & Control Systems - Faculty of Engineering - Sana’a University. ORCID: 0009-0002-9674-1075
2 Associate Professor of Robotics & Control, Electrical Engineering Department, Faculty of Engineering - Ibb University.
3 Mechatronics Engineering Department, Faculty of Engineering - Sana’a University.
* Corresponding Author Designation, Email: qadasiyaseen1997@gmail.com

https://doi.org/10.20428/jst.v30i2.2435
https://doi.org/10.20428/jst.v30i2.2435
mailto:qadasiyaseen1997@gmail.com

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

15

``X

X

https://journals.ust.edu/index.php/JST

Fully Autonomous Wheelchair for Indoor Mobility: A Hybrid Approach

to Mapping and Navigation with ROS

Yaseen Abduljalil Al-Qadasi

Mechatronics Engineering

Department, Faculty of

Engineering - Sana’a University

Sana’a, Yemen

qadasiyaseen1997@gmail.com

Hatem Al-Dois

 Electrical Engineering

Department, Faculty of

Engineering - Ibb University

Ibb, Yemen

haldois@yahoo.com

Mohammed Mohammed AlObaidi

Mechatronics Engineering

Department, Faculty of

Engineering - Sana’a University

Sana’a, Yemen

alobaidy415@gmail.com

Ali Abdullah Qayid

Mechatronics Engineering

Department, Faculty of

Engineering - Sana’a University

Sana’a, Yemen

Alawiiabdullah1997@gmail.com

Fareed Ameen Al-Abbassi

Mechatronics Engineering

Department, Faculty of

Engineering - Sana’a

University

Sana’a, Yemen

fareedalabassi@gmail.com

Emad Abdulwahed Saleh

 Mechatronics Engineering

Department, Faculty of

Engineering - Sana’a University

Sana’a, Yemen

 emad773544379@gmail.com

Abstract— People with severe physical disabilities often

find existing mobility solutions inadequate, necessitating the

need for reliable autonomous systems. This paper introduces

a ROS-based autonomous wheelchair that utilizes the Kinect

Xbox sensor for visual perception, RTAB-Map for mapping,

and AMCL for localization. Additionally, it incorporates

additional sensors that supply odometry and obstacle

detection data to the ROS navigation stack, enabling precise

path planning and real-time obstacle avoidance. Initial tests

using the Gmapping SLAM algorithm revealed

synchronization and accuracy issues. However, a hybrid

RTAB-Map and AMCL approach resolved these issues,

delivering superior detail in the maps and reliable navigation

indoors. The system consistently reached its target

destinations, proving robustness and accuracy. The Qt

framework-built user-friendly interface enables destination

selection, and AI-powered voice recognition integration is

currently in progress to facilitate hands-free control.

Keywords— ROS, Kinect Sensor, IMU, SLAM, RTAB-

Map, Navigation, AMCL (Adaptive Monte Carlo

Localization), Gazebo, Odometry.

I. INTRODUCTION

The concept of a wheelchair originated well before the

birth of Christ, approximately four or five centuries ago, and

over time, it has evolved to incorporate the latest

technologies to assist those in need. Initially, wheelchairs

were designed to be manually pushed, allowing disabled

individuals to achieve mobility. The development of

electrical motors led to the introduction of the concept of

motorized wheelchairs, which allow individuals to move

independently without external assistance. However, a

significant problem surfaced when manufacturers considered

the methods of controlling the motors. The issue arose from

the various types of disabilities that patients may have,

leading to a shift in the developmental focus towards the field

of control [1].

The interfacing and controlling methods developed from

pushbuttons to joysticks to the smart body connected

devices. The modern intelligent interfacing technologies

include Brain Computer Interface (BCI) [2], muscles

controlling neurons, and eye gaze interface. Since the last

intelligent control technique was discussed and implemented

in reality by our ex-classmates that’s why we turned to work

on more autonomous, reliable, and powerful mode as it will

be explained after.

The new growing field of controlling vehicles in general is

self-driving. As a developmental step, the field started by

designing semiautomatic robots, for example, automatic

obstacle avoidance systems or automatic parking systems.

However, the development of the artificial intelligence field

has led to the construction and use of fully automatic driven

vehicles, also known as self-driving vehicles [3]. For people

with extreme disabilities, we have applied the concepts of

self-driven vehicles to design and implement a system to

automatically move the wheelchair into the desired pose (and

orientation).

This paper comprises seven main sections. The autonomous

wheelchair addresses mobility challenges for individuals

with severe disabilities in Section [II]. Section [III] reviews

relevant research in ROS-based wheelchair systems and

identifies gaps our project addresses. Section [IV] covers the

system design and simulation, including theoretical

background, CAD modeling, and path planning. Section [V]

details the system implementation, including hardware setup

and software integration. Section [VI] presents the results

and discussion, highlighting the autonomous navigation

https://journals.ust.edu/index.php/JST
mailto:qadasiyaseen1997@gmail.com
mailto:haldois@yahoo.com
mailto:alobaidy415@gmail.com
mailto:Alawiiabdullah1997@gmail.com
mailto:fareedalabassi@gmail.com
mailto:emad773544379@gmail.com

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

https://doi.org/10.20428/jst.v30i2.2435

16

``

process, localization, and challenges addressed. Finally,

Section [VII] concludes with key findings and suggests

future work to enhance system capabilities.

II. PROBLEM STATEMENT

The number of people living with disabilities, primarily

due to war injuries and natural diseases, has been increasing,

thus contributing to a high demand for assistive

technologies. These victims referred to host severe physical

impairments, such as paralysis, Parkinson's disease, at times

tetraplegia, and other diseases making it impossible for a

patient to use a typical joystick-based wheelchair. Much

research has also been done on alternative techniques,

including voice command, EEG-based, and eye-tracking

systems. However, existing systems have proven erratic,

dangerous, unstable, and imprecise. With that, there is a

serious need for a reliable, secure, and efficient wheelchair

control system that is customized for people with severe

disabilities.

The primary motivation of this pursuit is to address the

unsolved challenges surrounding mobility and

independence for this underserved population, which affects

a significant proportion of the national and international

community. The key objectives are:

• To design and implement an efficient system that

enables individuals with severe physical disabilities

to control their wheelchairs effectively.

• To ensure the safety of wheelchair users by

applying robust algorithms and control

mechanisms.

• To apply the knowledge and concepts of

mechatronics engineering to develop a

comprehensive assistive technology solution.

III. LITERATURE REVIEW

It has been a decade since ROS (Robot Operating System)

first found applications for autonomous wheelchair

navigation, with significant improvements in flexibility,

affordability, and the integration of sensors. Zhang and Xu

showcased a ROS-powered voice-controlled smart

wheelchair in 2015, highlighting its superior speed and

flexibility compared to conventional wheelchair designs [4].

Xu et al. proposed a ROS-based mobile robot around that

time, focusing on adaptable location and mapping features

for wheelchair navigation systems [5]. In 2016, Nasri et al.

implemented a new geo-localization algorithm together with

omnidirectional sensors to navigate different paths

accurately [6]. Marrón and his team suggested an open

robotic platform using ROS and sensor fusion for the rapid

integration of state-of-the-art robotics developments into

intelligent wheelchairs (IWs) [7]. Subsequent research by

Grewal et al. [8] and Gatesichapakorn et al. [9] implemented

LIDAR and RGB-D cameras, improving obstacle detection

and mapping accuracy. More recently, studies by Sun et al.

[10] and Islam et al. [11] focused on SLAM-based navigation

for elderly support and cloud-integrated control,

respectively. Kappel and Ferreira developed a socially aware

navigation system for motorized wheelchairs, prioritizing

user comfort and adherence to social rules during indoor

navigation [12].

Although there have been significant strides in the

development of ROS-based autonomous wheelchair

systems, our project is one of the few to emphasize cost-

effectiveness and accessibility. In contrast to many of these,

we used a Kinect Xbox sensor instead of the more expensive

LiDAR, achieving reliable mapping with the RTAB-Map

algorithm and precise localization from the AMCL. Our

system combines the IMU, rotary encoders, and ultrasonic

sensors with efficient navigation within the ROS framework.

It has the Interface made user-friendly with Qt and Python,

and there are voice control system integration perspectives.

By balancing affordability and performance, our project

offers a practical, inclusive mobility solution for individuals

with disabilities.

IV. SYSTEM DESIGN AND SIMULATION

The System Design and Simulation section details the

modeling of the wheelchair using URDF/CAD and testing in

Gazebo. It integrates sensors (Kinect, IMU, encoders) and

applies SLAM for mapping and path planning, ensuring

accurate navigation in the simulated environment before

physical implementation.

A. Theoretical Background

Differential drive robots are widely used in autonomous

systems due to their simplicity and affordability. They

consist of two main drive wheels, each controlled

independently, allowing the robot to steer by adjusting the

relative speed of these wheels. The system is nonholonomic,

meaning it has constraints that prevent the robot from

moving directly in all directions, limiting its motion to the x-

y plane [13].

Kinematics of differential drive robots involves determining

the robot's position and orientation (pose) based on wheel

velocities. Forward kinematics calculates the robot’s new

pose given initial conditions and wheel speeds. The robot’s

movement is characterized by its instantaneous center of

curvature (ICC), around which it rotates.

1. Forward Kinematics: If the initial pose is (x,y,θ) and

wheel velocities 𝑉left and 𝑉right, then the new pose

(x′,y′,θ′) after a time interval δt is calculated using [14]:

𝜔 =
𝑉right − 𝑉left

𝐿

https://doi.org/10.20428/jst.v30i2.2435
https://doi.org/10.20428/jst.v30i2.2435

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

17

``X

X

https://journals.ust.edu/index.php/JST

where L is the distance between the wheels. The

updated orientation is:

𝜃′ = 𝜃 + 𝜔𝛿𝑡
The new position (x′,y′) is:

𝑥′ = 𝑥 + 𝑅 sin(𝜃′ − 𝜃)
𝑦′ = 𝑦 − 𝑅 cos(𝜃′ − 𝜃)

where R (the radius of the ICC) is:

𝑅 =
𝐿

2
×
𝑉left + 𝑉right

𝑉right − 𝑉left

Fig. 1. Kinematic Configuration of Differential Drive Robot [14]

2. Special Case in Motion:

o Straight Line Motion: 𝑉left = 𝑉right , so ω = 0,

gives linear motion.

o Rotation in Place: 𝑉left = −𝑉right, leading to

rotation around the robot’s center.

o Circular Path: Different 𝑉left and 𝑉right create a

curved trajectory around an ICC.

3. Inverse Kinematics: For a given pose (x′,y′,θ′), inverse

kinematics determines the wheel velocities 𝑉left and

𝑉right.

4. Odometry and Sensor Integration: Odometry, which

works based on wheel encoders, plays a key role in

estimating wheel velocities. These values continuously

update the position of the robot in the forward

kinematics equations. The rolling of the casters makes

the robot stable, correcting for unevenness in terrain.

B. CAD Modeling and Sensor Integration

The modeling process for our wheelchair was initialized

by gathering all required dimensions for the off-the-shelf

powered wheelchair – TSS300. These measurements were

critical to ensuring that 2D and 3D models in SolidWorks had

updated detail in major components like the chassis, wheels,

and sensor locations. Once the design was completed, the 3D

models were converted into a Unified Robot Description

Format (URDF) using a plugin, which is called sw2urdf that

can convert any SLD parts into its equivalent URDF file

which we really need to insert our wheelchair in ROS for

simulation.

Fig. 2. TSS 300 Electrical Wheelchair Model [15]

Note that figure 3 illustrate two different wheelchair designs

based on the camera's position. These design modifications

were evaluated during simulation and adjusted according to

mapping results from SLAM algorithms (Gmapping or

Rtabmap). Further details will be covered in section VI.

In Gazebo, we integrated the URDF model to test the robot's

functionality in a virtual environment. Essential sensors,

including the Kinect, IMU, and encoders, were added to

replicate real-world behavior. This allowed us to evaluate

the wheelchair’s performance, apply SLAM algorithms, and

test path planning strategies. The simulation provided a

critical platform to refine our design and validate the system

before proceeding to physical implementation.

Fig. 3. Two Different Wheelchair Designs Based on the Camera’s

Position

C. Mapping, Localization and Path Planning

 The depthimage_to_laserscan nodelet converts 3D

environmental data from the robot's depth sensor (Kinect)

into 2D laser scan data, enabling SLAM algorithms such as

Gmapping and Rtabmap. Nodelets ensure fast, efficient

processing by minimizing network overhead. The URDF

model includes simulation-specific tags, such as "collision"

and "inertial," while plugins like cliff sensors, contact

sensors, and the differential drive plugin simulate behavior

and compute odometry. The depth camera plugin simulates

the Kinect’s outputs. We use Rviz and Gazebo for

visualisation and mapping, monitoring sensor data in real-

time within a custom environment. SLAM algorithms

generate maps while localizing the robot, and AMCL is

https://journals.ust.edu/index.php/JST

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

https://doi.org/10.20428/jst.v30i2.2435

18

``

employed for precise localisation within pre-built maps. The

Gmapping package creates 2D maps during teleoperation,

with the final map saved for future use.

Additionally, we explore RTAB-Map, which generates both

2D and 3D maps using RGB-D data, making it suitable for

large-scale environments. RTAB-Map is effective for both

mapping and localization, enabling the wheelchair to

autonomously navigate to target locations while avoiding

obstacles. Path planning is performed using the ROS

navigation stack, with target positions set in Rviz for

autonomous movement.

Fig. 4. Wheelchair in the room environment – Gazebo

Fig. 5. Autonomous Navigation of Wheelchair - Rivz

V. SYSTEM IMPLEMENTATION

 In this section, we describe the hardware arrangement of

the autonomous wheelchair, along with the software

components. It also describes sensor-motor integration, low-

level processing of sensor data, control, high-level

processing for mapping and navigation, and the user

interface that would be needed for its easy control.

A. Hardware Setup

The hardware setup consists of various elements centered on

the microcontroller, Arduino Mega, together with main

sensors including Kinect, IMU (MPU6050), ultrasonic

sensor, and rotary encoders. Electrical layout includes

piecing these together with motor drivers [BTS7960] and

power supply, which will be 12V batteries, for efficient

movement control. Each component is mounted for optimum

functionality - Kinect on a steel base 22 cm from the footrest

for effective mapping of the environment, while the encoders

and ultrasonic sensors are placed in a way that would ensure

correct navigation and the detection of dynamic obstacles.

The cooling fan also acts to ensure that the control cabinet,

hosting Arduino and motor drivers, does not heat up. This in

return has an effect on performance, ensuring that there is

controlled interaction of the components given to make sure

proper and precise data processing is allowed with maximum

autonomous operation.

Key components of the hardware setup necessary to

implement an autonomous wheelchair:

▪ Microcontroller: Arduino Mega 2560 handles motor

control, sensor inputs, and data processing.

▪ Sensor Integration: Kinect for mapping (mounted 22

cm above footrest), IMU (MPU6050) for accurate

odometry, ultrasonic sensors for additional obstacle

detection.

▪ Drive System: Two motors with built-in encoders for

precise differential drive control.

▪ Power Supply: Two 12V batteries connected in

series, with a DC-DC converter for regulated

voltage.

▪ Wiring and Connections: Jumper cables and indoor

electrical wires ensure stable communication.

▪ Control Cabinet: Houses electronics with cooling

fan to prevent overheating during operation.

This hardware configuration provides a robust and well-

integrated system for autonomous navigation and sensor data

processing, forming the foundation for efficient wheelchair

operation in real-world environments.

Fig. 6. Hardware High-Level Design

B. Software Implementation

 The software architecture of the autonomous wheelchair

integrates multiple layers to manage sensor data acquisition,

high-level navigation planning, and real-time control. The

overall structure is illustrated in the figure, which highlights

the relationship between the Low-Level Processing, High-

https://doi.org/10.20428/jst.v30i2.2435
https://doi.org/10.20428/jst.v30i2.2435

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

19

``X

X

https://journals.ust.edu/index.php/JST

Level Processing, and User Interface components (see Fig.

7).

1) Low-Level Processing: This layer handles sensor

inputs and pre-processes them for the higher-level

algorithms. Key components include:

a) Sensors: The wheelchair relies on various sensors

such as the Kinect v2 for depth sensing, an

ultrasonic sensor for distance measurements, an

MPU for orientation (Euler angles), and wheel

encoders for tracking position (ticks).

b) Camera Driver (openni): The Kinect v2 provides

RGB and depth images that are pre-processed for

mapping and navigation. The camera driver handles

image registration and calibration.

c) Depth Image to Laser Scan: The depth data from

the Kinect is converted to a laser scan format

compatible with SLAM algorithms, ensuring

efficient real-time mapping and obstacle detection.

d) Wheelchair Driver: Sensors, actuators, and control

systems communicate via this basic module. The

PID controller and wheelchair controller receive

differential speed instructions using odometry data

(ticks) and sensor input for accurate motion control.

Fig. 7. Designed system architecture with sensing, processing, and

user interaction layers.

2) High-Level Processing: The high-level processing

layer involves the coordination of mapping, localization,

and navigation strategies:

a) RGB-D SLAM (rtabmap): This SLAM algorithm

creates detailed occupancy grid maps using data from

the low-level sensors. It generates a consistent map of

the environment while localizing the wheelchair

within it.

b) Navigation Stack (move_base): The navigation stack

includes:

i) Global and Local Costmaps: These costmaps are

generated using sensor data to plan collision-free

paths for the wheelchair. The global costmap relies

on the pre-built map, while the local costmap

dynamically adjusts to obstacles detected in real-

time.

ii) Global and Local Base Planners: These planners

generate paths and adjust the wheelchair's

movement, ensuring it follows the planned route

while adapting to dynamic obstacles.

3) User Interface: The GUI for the autonomous

wheelchair was designed to provide a simple and intuitive

interface that abstracts the complexity of the underlying

ROS system, ensuring accessibility for users with minimal

technical expertise. The interface features large, clearly

labeled buttons for essential functions such as starting,

stopping, and navigating to predefined positions (Pose 1,

Pose 2, Pose 3, and Home). It also provides a visual

representation of the mapped environment, enabling users

to monitor the wheelchair's current position and navigate

intuitively within the mapped space.

a) Design and Functionality: The GUI communicates

directly with the high-level processing layer using

ROS's Actionlib framework, enabling robust goal

management and real-time feedback during

execution. Key components include:

i. Start/Stop Buttons: Allow users to initiate or

halt wheelchair operations.

ii. Pose Navigation: Buttons for predefined

positions simplify navigation tasks.

iii. Real-time Feedback: Visual updates display

the robot's position and progress, improving

situational awareness.

iv. Actionlib Integration:

• Goals: Sends navigation goals from the GUI

to the action server.

• Status and Feedback: Provides real-time

updates on task progress and intermediate

states.

• Cancel and Result: Allows task cancellation

and communicates final outcomes to the GUI.

Fig. 8. Qt-Based User Interface for Navigation.

https://journals.ust.edu/index.php/JST

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

https://doi.org/10.20428/jst.v30i2.2435

20

``

Fig. 9. Action Interface – Communicate via ROS topics [17]

b) Testing: The GUI was successfully tested in Gazebo

simulations, demonstrating its capability to send

navigation goals, receive feedback, and control the

wheelchair effectively within a virtual environment.

These tests confirmed the system's functionality and

responsiveness (see figure 10). Real-world testing on

the physical wheelchair was not feasible due to time

constraints. Future plans include usability

evaluations with actual users to collect feedback on

accessibility, functionality, and overall user

experience, guiding further refinements for practical

use.

Fig. 10. Testing GUI in Gazebo with Pose 2

VI. RESULTS AND DISCUSSION

This section provides an overview of the outcomes achieved

in the self-guided navigation mode of our autonomous

wheelchair, emphasizing the methodologies used and the

obstacles successfully addressed. We used Simultaneous

Localization and Mapping (SLAM) approaches, namely

Gmapping and RGB-D SLAM (rtabmap), to construct an

environmental map by integrating a Microsoft Kinect 360

sensor with the Robot Operating System (ROS). Our

methodology allowed the wheelchair to maneuver to any

specified location within the mapped surroundings while

avoiding dynamic impediments.

Figure 11 depicts the altered wheelchair used in our study,

which incorporates all hardware components such as motors,

sensors, and the control system. An important inclusion is

the custom-made steel camera base that firmly supports the

Kinect sensor at an ideal height for efficient mapping of the

surroundings. The Kinect + Base Assembly is essential for

the capture of visual data, facilitating SLAM algorithms for

the purposes of mapping and localization. The design

preserves the original wheelchair frame while incorporating

these customized improvements, guaranteeing reliable

movement in indoor settings.

Fig. 11. Final Autonomous Wheelchair Design

A. Wheelchair Driver Implementation

The wheelchair driver module is in charge of low-level

control and sensor integration, necessary for navigation in an

independent way. This module will encompass the following

components: the Arduino embedded code, processing of

sensor data, and ROS nodes for handling the communication

between the hardware and the navigation stack.

The user-created Python driver node integrates the Arduino

with ROS. The Arduino node reads serial data from the

Arduino and converts it into ROS topics for use by the

navigation stack. It encapsulates IMU orientation data, wheel

encoder values, and motor speed commands. It subscribes to

topics like /cmd_vel and publishes motor speed targets using

topics like lwheel_vtarget and rwheel_vtarget. A PID

controller can provide stable and accurate speed control by

gaining proportionately for integral, integration, and

differentiation.

Additional ROS nodes like depth_image_to_laser_scan

(for converting Kinect depth data to laser scans)

and diff_tf.py (for broadcasting odometry transformations)

support the integration of sensor data into the ROS

environment. This ensures that the wheelchair has accurate

positional feedback and can navigate smoothly.

The keyboard_teleop.py node enables manual control for

tasks like building a static map, which is essential before

fully autonomous navigation.

B. Mapping and Localization Approaches

 In this project, we explored two main approaches for

mapping and localization: Gmapping SLAM and RGB-D

SLAM (rtabmap). The primary goal was to build a reliable

environment map and accurately localize the autonomous

wheelchair within that map.

https://doi.org/10.20428/jst.v30i2.2435
https://doi.org/10.20428/jst.v30i2.2435

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

21

``X

X

https://journals.ust.edu/index.php/JST

Fig. 12. Block diagram of "Wheelchair driver" module showing

the ROS nodes [16]

1) Gmapping SLAM: The Gmapping algorithm, known

for creating 2D occupancy grid maps using laser scan

data and odometry, was initially tested with our Kinect

360 camera. Figure 13 illustrates the environment map

created using the Gmapping algorithm after

approximately 30 minutes of manual teleoperation. The

map was generated by simulating laser scans with Kinect

data and demonstrates the system’s capability to produce

a 2D occupancy grid for path planning. However, despite

extensive parameter tuning (e.g., linear and angular

updates, map intervals), the resulting maps lacked the

required precision. Obstacle boundaries were often

inaccurate, and overall map quality was suboptimal,

leading us to consider alternative methods.

Fig. 13. Generated Grid-Maps by Gmapping SLAM Algorithm

2) RGB-D SLAM (rtabmap): Shifting to the RTAB-

Map algorithm significantly enhanced mapping

accuracy by utilizing synchronized RGB-D data to

generate detailed 2D and 3D maps, proving more

suitable for our Kinect-based system. The algorithm

performed particularly well in environments with ample

visual features, resulting in clear and consistent maps.

Figure 15 shows the real-time 3D mapping generated by

the RTAB-Map algorithm. The RGB-D data from the

Kinect sensor provides a detailed 3D reconstruction,

enhancing localization accuracy. The left panel displays

the live camera feed, and the right panel visualizes the

mapped environment in RViz.

Fig. 14. Real-time 3D Mapping by RTAB-Map Algorithm

Additionally, Figure 15 shows 2D grid maps generated by

RTAB-Map, which display better-defined boundaries and

fewer inaccuracies compared to previous SLAM algorithms.

These improvements were critical for more reliable

autonomous navigation, especially in environments where

traditional SLAM algorithms had difficulties with feature

scarcity or sensor data synchronization issues. However, in

environments with minimal visual features, such as plain

walls, rtabmap struggled with localization due to

insufficient data for object matching.

Fig. 15. Generated 2D Grid-Maps by RTAB-Map Algorithm

3) Mapping Accuracy: To evaluate the mapping

accuracy, we compared the Gmapping and RTAB-Map

algorithms. Table 1 summarizes key metrics such as

resolution and accuracy. RTAB-Map demonstrated a

significant improvement in map resolution, achieving 50

pixels/m² compared to 20 pixels/m² with Gmapping.

Similarly, RTAB-Map achieved a 90% overlap accuracy,

outperforming Gmapping’s 75%. These results are

visualized in Figure 13 and 15, which illustrates the maps

generated by both algorithms, highlighting the superior

precision and clarity of RTAB-Map maps.

4) AMCL for Improved Localization: The AMCL

(Adaptive Monte Carlo Localization) algorithm uses a

particle filter to estimate the robot’s pose within a pre-built

static map. This reliable localization performance was

achieved with AMCL in environments with sparse features

(see figure 15). Unlike RTAB-Map, which struggled with

limited visual cues, AMCL proved more consistent and

accurate by relying on probabilistic methods, enabling the

wheelchair to maintain precise localization even in visually

https://journals.ust.edu/index.php/JST

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

https://doi.org/10.20428/jst.v30i2.2435

22

``

simple or repetitive settings. This improvement was crucial

for stable autonomous navigation within mapped indoor

environments.

Fig. 16. Wheelchair localization within pre-built static map using

AMCL

C. Autonomous Navigation in a Pre-Built Map

This subsection covers the implementation of

autonomous navigation using ROS’s move_base node. The

system integrates odometry data, sensor inputs, and pre-built

maps to allow the wheelchair to move autonomously from

one point to another. The global planner uses pre-existing

maps for path planning, while the local planner dynamically

adjusts to avoid obstacles in real-time.

Global and local costmaps ensure the system accurately

identifies free space and obstacles, while recovery behaviors

(like rotating or clearing costmaps) help when the wheelchair

encounters unexpected issues. The system localizes with

AMCL, plans the route, and continuously adjusts until the

goal is reached.

Key parameters were carefully tuned to optimize navigation,

including [18]:

• Costmap Resolutions and Update Frequencies:

Ensured smooth navigation by balancing map

resolution with real-time updates.

• Goal Tolerances: Fine-tuning yaw and xy

tolerances enabled accurate goal-reaching.

• Planner Frequencies and Recovery Behaviors:

Adjustments to planner frequencies and recovery

settings (like oscillation timeouts and rotation

recovery) enhanced path reliability.

The results demonstrate that the system successfully

navigated autonomously, consistently reaching target goals

within the environment. The move_base node executed

planned paths efficiently while adapting to real-time

conditions. AMCL with 500 particles and a 0.1 resampling

threshold provided precise localization, and recovery

behaviors, including clearing costmaps every 15 seconds and

rotation recovery after 10 seconds of oscillation, improved

navigation reliability, particularly in dynamic obstacle

scenarios.

Fig. 17. Wheelchair generating a path toward the target goal

Fig. 18. Wheelchair successfully reaching the goal position and

orientation.

Costmaps with a resolution of 0.05 m/cell and a 5 Hz update

rate effectively mapped obstacles and free spaces. The global

planner, using the A* algorithm, calculated efficient routes,

while the local planner, based on the Dynamic Window

Approach (DWA), dynamically adjusted paths. Planner

frequencies were set at 10 Hz, and goal tolerances of 0.1 m

and 5° ensured accurate goal-reaching.

Figures 17 and 18 show the wheelchair's localization and

path planning process, as well as the successful achievement

of the goal position and orientation. The first image

illustrates the system's localization within the pre-built map

using the AMCL algorithm. The global and local planners

are activated to plan the path to the goal. The second one

demonstrates that the wheelchair successfully reached the

goal, confirming accurate position and orientation.

The system's navigation performance was evaluated in both

static and dynamic environments, achieving a 95% success

rate in static settings and a robust 85% in dynamic scenarios

with moving obstacles. RTAB-Map enhanced efficiency by

reducing the average time to reach goals from 15 seconds

(Gmapping) to 10 seconds, while also optimizing resource

utilization, lowering CPU usage from 80% to 60%.

https://doi.org/10.20428/jst.v30i2.2435
https://doi.org/10.20428/jst.v30i2.2435

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

23

``X

X

https://journals.ust.edu/index.php/JST

TABLE 2 - KEY CHALLENGES AND CORRECTIVE ACTIONS

D. Challenges and Corrective Actions

During the development and testing of the autonomous

wheelchair, several challenges arose, ranging from hardware

limitations to software integration issues. This subsection

summarizes the major challenges encountered and the

corresponding corrective actions taken to address them.

The next table summarizes key challenges and solutions in

our autonomous wheelchair project. Issues like inaccurate

mapping, poor localization, unstable navigation, and

hardware communication were resolved by switching

algorithms, fine-tuning parameters, optimizing code, and

improving hardware setup. Adjustments were also made for

better voice recognition and overheating control.

VII. CONCLUSION

This work solves the critical need for low-cost and

autonomous mobility solutions for people with severe

disabilities by providing an affordable wheelchair system

based on ROS. In fact, using Gmapping SLAM have shown

major challenges with sensor synchronization and mapping

accuracy; these are, therefore, counterproductive to good

navigation. As a result, we implemented a hybrid approach

that employs RTAB-Map for mapping and AMCL for

localization has significantly improved the precision of the

map, localization accuracy, and reliable indoor navigation.

Integration with the mapping system, adaptive path planning,

and user-friendly controls in one system is promising for

enhancing accessibility in diverse real-world scenarios.

 The hybrid RTAB-Map and AMCL approach has

practical implications for users, enabling reliable and

seamless navigation in dynamic indoor environments. Its

affordability, achieved through the use of cost-effective

sensors like Kinect, makes it accessible to underserved

populations, especially in low-resource settings.

Additionally, the system’s scalability and adaptability allow

it to meet various environmental and user-specific

requirements, addressing mobility challenges outlined in the

Problem Statement.

Finally, this prototype can be enhanced by replacing the

laptop with a Raspberry Pi and a slim screen. This will make

the overall weight of the system less, improving its

portability and making it more convenient to use. Usability

of the system may be improved with richer GUI options and

offline voice recognition. The further development of the

outdoor navigation capabilities of the system and the

refinement of the control algorithms in various environments

will further expand the applicability of the wheelchair,

enabling it to be more versatile and adaptive in real

situations.

ACKNOWLEDGMENTS

We are really grateful to all who contributed to the successful

completion of this project. We would like to thank our

supervisor, Dr. Hatem Al-Dois, for actually helping and

supporting us. We acknowledge also the graduation

members of the team: Eyad Al-Junied, Awad Al-Faieq,

Moath Jubarah, and Yousef Saleem for the contributions

throughout this project.

Challenge DESCRIPTION Corrective Action

Mapping Accuracy
Gmapping algorithm produced inaccurate maps

due to sensor synchronization issues.

Switched to RGB-D SLAM (rtabmap) for better

synchronization and improved map detail.

Localization in Sparse

Environments

Localization failed in environments with minimal

detectable features like plain walls.

Integrated AMCL for robust particle filter-based

localization in such environments.

Path Planning &

Obstacle Avoidance

The robot exhibited unstable navigation with

default move_base parameters.

Fine-tuned parameters like costmap settings, tolerances,

and recovery behaviors.

Hardware Integration &

Data Synchronization

Inconsistent data transmission between Arduino

and ROS led to communication lags.

Optimized Arduino code and used rosserial to ensure

efficient data flow.

Camera Base Position

for Accurate Mapping

A poorly placed camera missed low obstacles

during mapping, leading to inaccurate maps.

Designed a stable steel base to position the camera at an

optimal height of 22 cm above ground.

MPU 6050 Orientation

Data Issues

Non-normalized quaternion values from the MPU

caused issues in ROS odometry calculations.

Modified the MPU library to send Euler angles instead,

allowing ROS to compute and normalize the quaternion.

Qt Library Limitation

for Voice Recognition

Qt GUI lacked support for voice recognition,

impacting accessibility.

Transitioned to Tkinter, which supports integration with

the SpeechRecognition library.

https://journals.ust.edu/index.php/JST

Yaseen Al-Qadasi Hatem Al-Dois M. AlObaidi Ali Oayid Fareed Al-Abbassi Emad Saleh

Volume 30, Issue (2), 2025

https://doi.org/10.20428/jst.v30i2.2435

24

``

REFERENCES

[1] B. Woods and N. Watson, "history of the wheelchair,"

Encyclopedia Britannica, 11 Feb. 2015. [Online].

Available: https://www.britannica.com/technology/hist

ory-of-the-wheelchair. [Accessed: 01-Aug-2024].

[2] M. F. Ansari, D. R. Edla, S. Dodia, and V. Kuppili,

"Brain-Computer Interface for wheelchair control

operations: An approach based on Fast Fourier

Transform and On-Line Sequential Extreme Learning

Machine," Clinical Epidemiology and Global Health,

vol. 7, no. 3, pp. 391–397, Jul. 2019, doi:

10.1016/j.cegh.2018.10.007.

[3] S. Abdallaoui, H. Ikaouassen, A. Kribèche, A. Chaibet,

and E.-H. Aglzim, "Advancing autonomous vehicle

control systems: An in-depth overview of decision-

making and manoeuvre execution state of the art," The

Journal of Engineering, vol. 2023, no. 23, pp. 1-12,

Nov. 2023, doi: 10.1049/tje2.12333.

[4] Y. Zhang and S. Xu, "ROS Based Voice-Control

Navigation of Intelligent Wheelchair," Applied

Mechanics and Materials., vol. 733, pp. 740–744, Feb.

2015, doi: 10.4028/www.scientific.net/AMM.733.740.

[5] Q. Xu, J. Zhao, C. Zhang and F. He, "Design and

implementation of an ROS based autonomous

navigation system," 2015 IEEE International

Conference on Mechatronics and Automation (ICMA),

Beijing, China, 2015, pp. 2220-2225, doi:

10.1109/ICMA.2015.7237831.

[6] Y. Nasri, V. Vauchey, R. Khemmar, N. Ragot, K.

Sirlantzis, and J.-Y. Ertaud, "ROS-based autonomous

navigation wheelchair using omnidirectional sensor,"

International Journal of Computer Applications, vol.

133, no. 6, pp. 12–17, Jan. 2016. doi:

10.5120/ijca2016907533.

[7] M. Marrón, J. C. García, Ł. Księżak, P. Del Moral, D.

Pinedo and J. León, "Open platform and open software

for an Intelligent Wheelchair with autonomous

navigation using sensor fusion," IECON 2016 - 42nd

Annual Conference of the IEEE Industrial Electronics

Society, Florence, Italy, 2016, pp. 5929-5934, doi:

10.1109/IECON.2016.7793775

[8] H. Grewal, A. Matthews, R. Tea and K. George,

"LIDAR-based autonomous wheelchair," 2017 IEEE

Sensors Applications Symposium (SAS), Glassboro, NJ,

USA, 2017, pp. 1-6, doi: 10.1109/SAS.2017.7894082.

[9] S. Gatesichapakorn, J. Takamatsu and M.

Ruchanurucks, "ROS based Autonomous Mobile Robot

Navigation using 2D LiDAR and RGB-D

Camera," 2019 First International Symposium on

Instrumentation, Control, Artificial Intelligence, and

Robotics (ICA-SYMP), Bangkok, Thailand, 2019, pp.

151-154, doi: 10.1109/ICA-SYMP.2019.8645984

[10] J. Sun, X. Yu, X. Cao, X. Kong, P. Gao and H. Luo,

"SLAM Based Indoor Autonomous Navigation System

For Electric Wheelchair," 2022 7th International

Conference on Automation, Control and Robotics

Engineering (CACRE), Xi'an, China, 2022, pp. 269-

274, doi: 10.1109/CACRE54574.2022.9834195.

[11] M. T. Islam, I. R. Hameem, S. Saha, M. J. R.

Chowdhury and M. E. Deowan, "A Simulation of a

Robot Operating System Based Autonomous

Wheelchair with Web Based HMI Using

Rosbridge," 2023 3rd International Conference on

Robotics, Electrical and Signal Processing Techniques

(ICREST), Dhaka, Bangladesh, 2023, pp. 175-180, doi:

10.1109/ICREST57604.2023.10070046.

[12] K. Kappel and P. R. Ferreira, "Towards Comfortable

and Socially Acceptable Navigation in Autonomous

Motorized Wheelchairs," 2023 Latin American

Robotics Symposium (LARS), 2023 Brazilian

Symposium on Robotics (SBR), and 2023 Workshop on

Robotics in Education (WRE), Salvador, Brazil, 2023,

pp. 319-324, doi:

10.1109/LARS/SBR/WRE59448.2023.10332989.

[13] M. Quigley, B. Gerkey, and W. D. Smart, Programming

Robots with ROS: A Practical Introduction to the Robot

Operating System. Sebastopol, CA, USA: O'Reilly

Media, Inc., 2015.

[14] L. Joseph and J. Cacace, Mastering ROS for Robotics

Programming. 2nd Edition, Packt Publishing Ltd,

February, 2018.

[15] TSS300 Owner's Manual, Marc's Mobility. Rev B.

December 2009. [Online]. Available:

https://www.manualslib.com/manual/694478/Pride-

Mobility-Tss300.html [Accessed: 06-Aug-2024].

[16] F. Al-Fahaidy, H. Al-Dois, F. A. K. Al-Fu-Haidy, and

E. A. Qasabah, "Design and Implementation of an Eye-

Controlled Self-Driving Wheelchair," ResearchGate,

Nov. 2021. [Online].

Available: https://www.researchgate.net/publication/3

56587774_Design_and_Implementation_of_an_Eye-

Controlled_Self-Driving_Wheelchair. [Accessed: 14-

Aug-2024].

[17] P. Chahal, "Robot operating systems (ros) overview &

(1)," SlideShare, May 3, 2011. [Online]. Available:

https://www.slideshare.net/robot-operating-systems-

ros-overview/17822782 [Accessed: 08-Aug-2024].

[18] Yokozuka, M., Hashimoto, N., Tomita, K., &

Matsumoto, O. Development of Autonomous

Wheelchair for Indoor and Outdoor Traveling. Internet

of Things Summit. 2014.

https://doi.org/10.20428/jst.v30i2.2435
https://doi.org/10.20428/jst.v30i2.2435
https://www.britannica.com/technology/history-of-the-wheelchair
https://www.britannica.com/technology/history-of-the-wheelchair
https://www.manualslib.com/manual/694478/Pride-Mobility-Tss300.html
https://www.manualslib.com/manual/694478/Pride-Mobility-Tss300.html
https://www.researchgate.net/publication/356587774_Design_and_Implementation_of_an_Eye-Controlled_Self-Driving_Wheelchair
https://www.researchgate.net/publication/356587774_Design_and_Implementation_of_an_Eye-Controlled_Self-Driving_Wheelchair
https://www.researchgate.net/publication/356587774_Design_and_Implementation_of_an_Eye-Controlled_Self-Driving_Wheelchair
https://www.slideshare.net/robot-operating-systems-ros-overview/17822782
https://www.slideshare.net/robot-operating-systems-ros-overview/17822782

