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Abstract— People with severe physical disabilities often 

find existing mobility solutions inadequate, necessitating the 

need for reliable autonomous systems. This paper introduces 

a ROS-based autonomous wheelchair that utilizes the Kinect 

Xbox sensor for visual perception, RTAB-Map for mapping, 

and AMCL for localization. Additionally, it incorporates 

additional sensors that supply odometry and obstacle 

detection data to the ROS navigation stack, enabling precise 

path planning and real-time obstacle avoidance. Initial tests 

using the Gmapping SLAM algorithm revealed 

synchronization and accuracy issues. However, a hybrid 

RTAB-Map and AMCL approach resolved these issues, 

delivering superior detail in the maps and reliable navigation 

indoors. The system consistently reached its target 

destinations, proving robustness and accuracy. The Qt 

framework-built user-friendly interface enables destination 

selection, and AI-powered voice recognition integration is 

currently in progress to facilitate hands-free control. 

Keywords— ROS, Kinect Sensor, IMU, SLAM, RTAB-

Map, Navigation, AMCL (Adaptive Monte Carlo 

Localization), Gazebo, Odometry. 

I. INTRODUCTION 

The concept of a wheelchair originated well before the 

birth of Christ, approximately four or five centuries ago, and 

over time, it has evolved to incorporate the latest 

technologies to assist those in need. Initially, wheelchairs 

were designed to be manually pushed, allowing disabled 

individuals to achieve mobility. The development of 

electrical motors led to the introduction of the concept of 

motorized wheelchairs, which allow individuals to move 

independently without external assistance. However, a 

significant problem surfaced when manufacturers considered 

the methods of controlling the motors. The issue arose from 

the various types of disabilities that patients may have, 

leading to a shift in the developmental focus towards the field 

of control [1]. 

The interfacing and controlling methods developed from 

pushbuttons to joysticks to the smart body connected 

devices. The modern intelligent interfacing technologies 

include Brain Computer Interface (BCI) [2], muscles 

controlling neurons, and eye gaze interface. Since the last 

intelligent control technique was discussed and implemented 

in reality by our ex-classmates that’s why we turned to work 

on more autonomous, reliable, and powerful mode as it will 

be explained after. 

The new growing field of controlling vehicles in general is 

self-driving. As a developmental step, the field started by 

designing semiautomatic robots, for example, automatic 

obstacle avoidance systems or automatic parking systems. 

However, the development of the artificial intelligence field 

has led to the construction and use of fully automatic driven 

vehicles, also known as self-driving vehicles [3]. For people 

with extreme disabilities, we have applied the concepts of 

self-driven vehicles to design and implement a system to 

automatically move the wheelchair into the desired pose (and 

orientation). 

This paper comprises seven main sections. The autonomous 

wheelchair addresses mobility challenges for individuals 

with severe disabilities in Section [II]. Section [III] reviews 

relevant research in ROS-based wheelchair systems and 

identifies gaps our project addresses. Section [IV] covers the 

system design and simulation, including theoretical 

background, CAD modeling, and path planning. Section [V] 

details the system implementation, including hardware setup 

and software integration. Section [VI] presents the results 

and discussion, highlighting the autonomous navigation 
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process, localization, and challenges addressed.  Finally, 

Section [VII] concludes with key findings and suggests 

future work to enhance system capabilities. 

II. PROBLEM STATEMENT 

The number of people living with disabilities, primarily 

due to war injuries and natural diseases, has been increasing, 

thus contributing to a high demand for assistive 

technologies. These victims referred to host severe physical 

impairments, such as paralysis, Parkinson's disease, at times 

tetraplegia, and other diseases making it impossible for a 

patient to use a typical joystick-based wheelchair. Much 

research has also been done on alternative techniques, 

including voice command, EEG-based, and eye-tracking 

systems. However, existing systems have proven erratic, 

dangerous, unstable, and imprecise. With that, there is a 

serious need for a reliable, secure, and efficient wheelchair 

control system that is customized for people with severe 

disabilities. 

The primary motivation of this pursuit is to address the 

unsolved challenges surrounding mobility and 

independence for this underserved population, which affects 

a significant proportion of the national and international 

community. The key objectives are: 

• To design and implement an efficient system that 

enables individuals with severe physical disabilities 

to control their wheelchairs effectively. 

• To ensure the safety of wheelchair users by 

applying robust algorithms and control 

mechanisms. 

• To apply the knowledge and concepts of 

mechatronics engineering to develop a 

comprehensive assistive technology solution. 

 

III. LITERATURE REVIEW 

It has been a decade since ROS (Robot Operating System) 

first found applications for autonomous wheelchair 

navigation, with significant improvements in flexibility, 

affordability, and the integration of sensors. Zhang and Xu 

showcased a ROS-powered voice-controlled smart 

wheelchair in 2015, highlighting its superior speed and 

flexibility compared to conventional wheelchair designs [4]. 

Xu et al. proposed a ROS-based mobile robot around that 

time, focusing on adaptable location and mapping features 

for wheelchair navigation systems [5]. In 2016, Nasri et al. 

implemented a new geo-localization algorithm together with 

omnidirectional sensors to navigate different paths 

accurately [6]. Marrón and his team suggested an open 

robotic platform using ROS and sensor fusion for the rapid 

integration of state-of-the-art robotics developments into 

intelligent wheelchairs (IWs) [7]. Subsequent research by 

Grewal et al. [8] and Gatesichapakorn et al. [9] implemented 

LIDAR and RGB-D cameras, improving obstacle detection 

and mapping accuracy. More recently, studies by Sun et al. 

[10] and Islam et al. [11] focused on SLAM-based navigation 

for elderly support and cloud-integrated control, 

respectively. Kappel and Ferreira developed a socially aware 

navigation system for motorized wheelchairs, prioritizing 

user comfort and adherence to social rules during indoor 

navigation [12]. 

Although there have been significant strides in the 

development of ROS-based autonomous wheelchair 

systems, our project is one of the few to emphasize cost-

effectiveness and accessibility. In contrast to many of these, 

we used a Kinect Xbox sensor instead of the more expensive 

LiDAR, achieving reliable mapping with the RTAB-Map 

algorithm and precise localization from the AMCL. Our 

system combines the IMU, rotary encoders, and ultrasonic 

sensors with efficient navigation within the ROS framework. 

It has the Interface made user-friendly with Qt and Python, 

and there are voice control system integration perspectives. 

By balancing affordability and performance, our project 

offers a practical, inclusive mobility solution for individuals 

with disabilities. 

IV. SYSTEM DESIGN AND SIMULATION 

The System Design and Simulation section details the 

modeling of the wheelchair using URDF/CAD and testing in 

Gazebo. It integrates sensors (Kinect, IMU, encoders) and 

applies SLAM for mapping and path planning, ensuring 

accurate navigation in the simulated environment before 

physical implementation. 

A. Theoretical Background 

Differential drive robots are widely used in autonomous 

systems due to their simplicity and affordability. They 

consist of two main drive wheels, each controlled 

independently, allowing the robot to steer by adjusting the 

relative speed of these wheels. The system is nonholonomic, 

meaning it has constraints that prevent the robot from 

moving directly in all directions, limiting its motion to the x-

y plane [13]. 

Kinematics of differential drive robots involves determining 

the robot's position and orientation (pose) based on wheel 

velocities. Forward kinematics calculates the robot’s new 

pose given initial conditions and wheel speeds. The robot’s 

movement is characterized by its instantaneous center of 

curvature (ICC), around which it rotates.  

1. Forward Kinematics:  If the initial pose is (x,y,θ) and 

wheel velocities 𝑉left  and 𝑉right, then the new pose 

(x′,y′,θ′) after a time interval δt is calculated using [14]: 

𝜔 =
𝑉right − 𝑉left

𝐿
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where L is the distance between the wheels. The 

updated orientation is: 

𝜃′ = 𝜃 + 𝜔𝛿𝑡 
The new position (x′,y′) is: 

𝑥′ = 𝑥 + 𝑅 sin(𝜃′ − 𝜃) 
𝑦′ = 𝑦 − 𝑅 cos(𝜃′ − 𝜃) 

where R (the radius of the ICC) is: 

𝑅 =
𝐿

2
×
𝑉left + 𝑉right

𝑉right − 𝑉left
 

 
 

Fig. 1. Kinematic Configuration of Differential Drive Robot [14] 

2. Special Case in Motion: 

o Straight Line Motion: 𝑉left = 𝑉right , so ω = 0, 

gives linear motion. 

o Rotation in Place: 𝑉left = −𝑉right, leading to 

rotation around the robot’s center. 

o Circular Path: Different 𝑉left  and 𝑉right create a 

curved trajectory around an ICC. 

3. Inverse Kinematics: For a given pose (x′,y′,θ′), inverse 

kinematics determines the wheel velocities 𝑉left  and 

𝑉right. 

4. Odometry and Sensor Integration: Odometry, which 

works based on wheel encoders, plays a key role in 

estimating wheel velocities. These values continuously 

update the position of the robot in the forward 

kinematics equations. The rolling of the casters makes 

the robot stable, correcting for unevenness in terrain. 

B. CAD Modeling and Sensor Integration 

The modeling process for our wheelchair was initialized 

by gathering all required dimensions for the off-the-shelf 

powered wheelchair – TSS300. These measurements were 

critical to ensuring that 2D and 3D models in SolidWorks had 

updated detail in major components like the chassis, wheels, 

and sensor locations. Once the design was completed, the 3D 

models were converted into a Unified Robot Description 

Format (URDF) using a plugin, which is called sw2urdf that 

can convert any SLD parts into its equivalent URDF file 

which we really need to insert our wheelchair in ROS for 

simulation. 

 
Fig. 2. TSS 300 Electrical Wheelchair Model [15] 

 

Note that figure 3 illustrate two different wheelchair designs 

based on the camera's position. These design modifications 

were evaluated during simulation and adjusted according to 

mapping results from SLAM algorithms (Gmapping or 

Rtabmap). Further details will be covered in section VI. 

In Gazebo, we integrated the URDF model to test the robot's 

functionality in a virtual environment. Essential sensors, 

including the Kinect, IMU, and encoders, were added to 

replicate real-world behavior. This allowed us to evaluate 

the wheelchair’s performance, apply SLAM algorithms, and 

test path planning strategies. The simulation provided a 

critical platform to refine our design and validate the system 

before proceeding to physical implementation. 

 
Fig. 3. Two Different Wheelchair Designs Based on the Camera’s 

Position 

C. Mapping, Localization and Path Planning 

 The depthimage_to_laserscan nodelet converts 3D 

environmental data from the robot's depth sensor (Kinect) 

into 2D laser scan data, enabling SLAM algorithms such as 

Gmapping and Rtabmap. Nodelets ensure fast, efficient 

processing by minimizing network overhead.  The URDF 

model includes simulation-specific tags, such as "collision" 

and "inertial," while plugins like cliff sensors, contact 

sensors, and the differential drive plugin simulate behavior 

and compute odometry.  The depth camera plugin simulates 

the Kinect’s outputs. We use Rviz and Gazebo for 

visualisation and mapping, monitoring sensor data in real-

time within a custom environment. SLAM algorithms 

generate maps while localizing the robot, and AMCL is 

https://journals.ust.edu/index.php/JST
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employed for precise localisation within pre-built maps. The 

Gmapping package creates 2D maps during teleoperation, 

with the final map saved for future use. 

Additionally, we explore RTAB-Map, which generates both 

2D and 3D maps using RGB-D data, making it suitable for 

large-scale environments. RTAB-Map is effective for both 

mapping and localization, enabling the wheelchair to 

autonomously navigate to target locations while avoiding 

obstacles. Path planning is performed using the ROS 

navigation stack, with target positions set in Rviz for 

autonomous movement. 

 

Fig. 4. Wheelchair in the room environment – Gazebo 

 

Fig. 5. Autonomous Navigation of Wheelchair - Rivz 

V. SYSTEM IMPLEMENTATION 

 In this section, we describe the hardware arrangement of 

the autonomous wheelchair, along with the software 

components. It also describes sensor-motor integration, low-

level processing of sensor data, control, high-level 

processing for mapping and navigation, and the user 

interface that would be needed for its easy control. 

A. Hardware Setup 

The hardware setup consists of various elements centered on 

the microcontroller, Arduino Mega, together with main 

sensors including Kinect, IMU (MPU6050), ultrasonic 

sensor, and rotary encoders. Electrical layout includes 

piecing these together with motor drivers [BTS7960] and 

power supply, which will be 12V batteries, for efficient 

movement control. Each component is mounted for optimum 

functionality - Kinect on a steel base 22 cm from the footrest 

for effective mapping of the environment, while the encoders 

and ultrasonic sensors are placed in a way that would ensure 

correct navigation and the detection of dynamic obstacles. 

The cooling fan also acts to ensure that the control cabinet, 

hosting Arduino and motor drivers, does not heat up. This in 

return has an effect on performance, ensuring that there is 

controlled interaction of the components given to make sure 

proper and precise data processing is allowed with maximum 

autonomous operation. 

Key components of the hardware setup necessary to 

implement an autonomous wheelchair: 

▪ Microcontroller: Arduino Mega 2560 handles motor 

control, sensor inputs, and data processing. 

▪ Sensor Integration: Kinect for mapping (mounted 22 

cm above footrest), IMU (MPU6050) for accurate 

odometry, ultrasonic sensors for additional obstacle 

detection. 

▪ Drive System: Two motors with built-in encoders for 

precise differential drive control. 

▪ Power Supply: Two 12V batteries connected in 

series, with a DC-DC converter for regulated 

voltage.  

▪ Wiring and Connections: Jumper cables and indoor 

electrical wires ensure stable communication. 

▪ Control Cabinet: Houses electronics with cooling 

fan to prevent overheating during operation. 

This hardware configuration provides a robust and well-

integrated system for autonomous navigation and sensor data 

processing, forming the foundation for efficient wheelchair 

operation in real-world environments. 

 

Fig. 6. Hardware High-Level Design 

B. Software Implementation 

 The software architecture of the autonomous wheelchair 

integrates multiple layers to manage sensor data acquisition, 

high-level navigation planning, and real-time control. The 

overall structure is illustrated in the figure, which highlights 

the relationship between the Low-Level Processing, High-

https://doi.org/10.20428/jst.v30i2.2435
https://doi.org/10.20428/jst.v30i2.2435


 

 

Yaseen Al-Qadasi     Hatem Al-Dois      M. AlObaidi     Ali Oayid     Fareed Al-Abbassi      Emad Saleh 

Volume 30, Issue (2), 2025 

 

19 

``X

X 

https://journals.ust.edu/index.php/JST 

Level Processing, and User Interface components (see Fig. 

7). 

1) Low-Level Processing: This layer handles sensor 

inputs and pre-processes them for the higher-level 

algorithms. Key components include: 

a) Sensors: The wheelchair relies on various sensors 

such as the Kinect v2 for depth sensing, an 

ultrasonic sensor for distance measurements, an 

MPU for orientation (Euler angles), and wheel 

encoders for tracking position (ticks). 

b) Camera Driver (openni): The Kinect v2 provides 

RGB and depth images that are pre-processed for 

mapping and navigation. The camera driver handles 

image registration and calibration. 

c) Depth Image to Laser Scan: The depth data from 

the Kinect is converted to a laser scan format 

compatible with SLAM algorithms, ensuring 

efficient real-time mapping and obstacle detection.  

d) Wheelchair Driver: Sensors, actuators, and control 

systems communicate via this basic module. The 

PID controller and wheelchair controller receive 

differential speed instructions using odometry data 

(ticks) and sensor input for accurate motion control. 

 

Fig. 7. Designed system architecture with sensing, processing, and 

user interaction layers. 

2) High-Level Processing: The high-level processing 

layer involves the coordination of mapping, localization, 

and navigation strategies: 

a) RGB-D SLAM (rtabmap): This SLAM algorithm 

creates detailed occupancy grid maps using data from 

the low-level sensors. It generates a consistent map of 

the environment while localizing the wheelchair 

within it. 

b) Navigation Stack (move_base): The navigation stack 

includes: 

i) Global and Local Costmaps: These costmaps are 

generated using sensor data to plan collision-free 

paths for the wheelchair. The global costmap relies 

on the pre-built map, while the local costmap 

dynamically adjusts to obstacles detected in real-

time. 

ii) Global and Local Base Planners: These planners 

generate paths and adjust the wheelchair's 

movement, ensuring it follows the planned route 

while adapting to dynamic obstacles. 

3) User Interface: The GUI for the autonomous 

wheelchair was designed to provide a simple and intuitive 

interface that abstracts the complexity of the underlying 

ROS system, ensuring accessibility for users with minimal 

technical expertise. The interface features large, clearly 

labeled buttons for essential functions such as starting, 

stopping, and navigating to predefined positions (Pose 1, 

Pose 2, Pose 3, and Home). It also provides a visual 

representation of the mapped environment, enabling users 

to monitor the wheelchair's current position and navigate 

intuitively within the mapped space. 

a) Design and Functionality: The GUI communicates 

directly with the high-level processing layer using 

ROS's Actionlib framework, enabling robust goal 

management and real-time feedback during 

execution. Key components include: 

i. Start/Stop Buttons: Allow users to initiate or 

halt wheelchair operations. 

ii. Pose Navigation: Buttons for predefined 

positions simplify navigation tasks. 

iii. Real-time Feedback: Visual updates display 

the robot's position and progress, improving 

situational awareness. 

iv. Actionlib Integration: 

• Goals: Sends navigation goals from the GUI 

to the action server. 

• Status and Feedback: Provides real-time 

updates on task progress and intermediate 

states. 

• Cancel and Result: Allows task cancellation 

and communicates final outcomes to the GUI. 

 
Fig. 8. Qt-Based User Interface for Navigation. 

https://journals.ust.edu/index.php/JST
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Fig. 9. Action Interface – Communicate via ROS topics [17] 

b) Testing: The GUI was successfully tested in Gazebo 

simulations, demonstrating its capability to send 

navigation goals, receive feedback, and control the 

wheelchair effectively within a virtual environment. 

These tests confirmed the system's functionality and 

responsiveness (see figure 10). Real-world testing on 

the physical wheelchair was not feasible due to time 

constraints. Future plans include usability 

evaluations with actual users to collect feedback on 

accessibility, functionality, and overall user 

experience, guiding further refinements for practical 

use. 

 
Fig. 10. Testing GUI in Gazebo with Pose 2  

VI. RESULTS AND DISCUSSION 

This section provides an overview of the outcomes achieved 

in the self-guided navigation mode of our autonomous 

wheelchair, emphasizing the methodologies used and the 

obstacles successfully addressed. We used Simultaneous 

Localization and Mapping (SLAM) approaches, namely 

Gmapping and RGB-D SLAM (rtabmap), to construct an 

environmental map by integrating a Microsoft Kinect 360 

sensor with the Robot Operating System (ROS). Our 

methodology allowed the wheelchair to maneuver to any 

specified location within the mapped surroundings while 

avoiding dynamic impediments. 

Figure 11 depicts the altered wheelchair used in our study, 

which incorporates all hardware components such as motors, 

sensors, and the control system. An important inclusion is 

the custom-made steel camera base that firmly supports the 

Kinect sensor at an ideal height for efficient mapping of the 

surroundings. The Kinect + Base Assembly is essential for 

the capture of visual data, facilitating SLAM algorithms for 

the purposes of mapping and localization. The design 

preserves the original wheelchair frame while incorporating 

these customized improvements, guaranteeing reliable 

movement in indoor settings. 

 
Fig. 11. Final Autonomous Wheelchair Design  

A. Wheelchair Driver Implementation 

The wheelchair driver module is in charge of low-level 

control and sensor integration, necessary for navigation in an 

independent way. This module will encompass the following 

components: the Arduino embedded code, processing of 

sensor data, and ROS nodes for handling the communication 

between the hardware and the navigation stack. 

The user-created Python driver node integrates the Arduino 

with ROS. The Arduino node reads serial data from the 

Arduino and converts it into ROS topics for use by the 

navigation stack. It encapsulates IMU orientation data, wheel 

encoder values, and motor speed commands. It subscribes to 

topics like /cmd_vel and publishes motor speed targets using 

topics like lwheel_vtarget and rwheel_vtarget. A PID 

controller can provide stable and accurate speed control by 

gaining proportionately for integral, integration, and 

differentiation. 

Additional ROS nodes like depth_image_to_laser_scan 

(for converting Kinect depth data to laser scans) 

and diff_tf.py (for broadcasting odometry transformations) 

support the integration of sensor data into the ROS 

environment. This ensures that the wheelchair has accurate 

positional feedback and can navigate smoothly. 

The keyboard_teleop.py node enables manual control for 

tasks like building a static map, which is essential before 

fully autonomous navigation. 

B. Mapping and Localization Approaches 

 In this project, we explored two main approaches for 

mapping and localization: Gmapping SLAM and RGB-D 

SLAM (rtabmap). The primary goal was to build a reliable 

environment map and accurately localize the autonomous 

wheelchair within that map. 
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Fig. 12. Block diagram of "Wheelchair driver" module showing 

the ROS nodes [16] 

1) Gmapping SLAM: The Gmapping algorithm, known 

for creating 2D occupancy grid maps using laser scan 

data and odometry, was initially tested with our Kinect 

360 camera. Figure 13 illustrates the environment map 

created using the Gmapping algorithm after 

approximately 30 minutes of manual teleoperation. The 

map was generated by simulating laser scans with Kinect 

data and demonstrates the system’s capability to produce 

a 2D occupancy grid for path planning. However, despite 

extensive parameter tuning (e.g., linear and angular 

updates, map intervals), the resulting maps lacked the 

required precision. Obstacle boundaries were often 

inaccurate, and overall map quality was suboptimal, 

leading us to consider alternative methods. 

 
Fig. 13. Generated Grid-Maps by Gmapping SLAM Algorithm 

 

2) RGB-D SLAM (rtabmap): Shifting to the RTAB-

Map algorithm significantly enhanced mapping 

accuracy by utilizing synchronized RGB-D data to 

generate detailed 2D and 3D maps, proving more 

suitable for our Kinect-based system. The algorithm 

performed particularly well in environments with ample 

visual features, resulting in clear and consistent maps. 

Figure 15 shows the real-time 3D mapping generated by 

the RTAB-Map algorithm. The RGB-D data from the 

Kinect sensor provides a detailed 3D reconstruction, 

enhancing localization accuracy. The left panel displays 

the live camera feed, and the right panel visualizes the 

mapped environment in RViz. 

 
Fig. 14. Real-time 3D Mapping by RTAB-Map Algorithm 

Additionally, Figure 15 shows 2D grid maps generated by 

RTAB-Map, which display better-defined boundaries and 

fewer inaccuracies compared to previous SLAM algorithms. 

These improvements were critical for more reliable 

autonomous navigation, especially in environments where 

traditional SLAM algorithms had difficulties with feature 

scarcity or sensor data synchronization issues. However, in 

environments with minimal visual features, such as plain 

walls, rtabmap struggled with localization due to 

insufficient data for object matching. 

Fig. 15. Generated 2D Grid-Maps by RTAB-Map Algorithm 

3) Mapping Accuracy: To evaluate the mapping 

accuracy, we compared the Gmapping and RTAB-Map 

algorithms. Table 1 summarizes key metrics such as 

resolution and accuracy. RTAB-Map demonstrated a 

significant improvement in map resolution, achieving 50 

pixels/m² compared to 20 pixels/m² with Gmapping. 

Similarly, RTAB-Map achieved a 90% overlap accuracy, 

outperforming Gmapping’s 75%. These results are 

visualized in Figure 13 and 15, which illustrates the maps 

generated by both algorithms, highlighting the superior 

precision and clarity of RTAB-Map maps. 

4) AMCL for Improved Localization: The AMCL 

(Adaptive Monte Carlo Localization) algorithm uses a 

particle filter to estimate the robot’s pose within a pre-built 

static map. This reliable localization performance was 

achieved with AMCL in environments with sparse features 

(see figure 15). Unlike RTAB-Map, which struggled with 

limited visual cues, AMCL proved more consistent and 

accurate by relying on probabilistic methods, enabling the 

wheelchair to maintain precise localization even in visually 

https://journals.ust.edu/index.php/JST
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simple or repetitive settings. This improvement was crucial 

for stable autonomous navigation within mapped indoor 

environments.  

Fig. 16. Wheelchair localization within pre-built static map using 

AMCL 

C. Autonomous Navigation in a Pre-Built Map 

This subsection covers the implementation of 

autonomous navigation using ROS’s move_base node. The 

system integrates odometry data, sensor inputs, and pre-built 

maps to allow the wheelchair to move autonomously from 

one point to another. The global planner uses pre-existing 

maps for path planning, while the local planner dynamically 

adjusts to avoid obstacles in real-time. 

Global and local costmaps ensure the system accurately 

identifies free space and obstacles, while recovery behaviors 

(like rotating or clearing costmaps) help when the wheelchair 

encounters unexpected issues. The system localizes with 

AMCL, plans the route, and continuously adjusts until the 

goal is reached. 

Key parameters were carefully tuned to optimize navigation, 

including [18]: 

• Costmap Resolutions and Update Frequencies: 

Ensured smooth navigation by balancing map 

resolution with real-time updates. 

• Goal Tolerances: Fine-tuning yaw and xy 

tolerances enabled accurate goal-reaching. 

• Planner Frequencies and Recovery Behaviors: 

Adjustments to planner frequencies and recovery 

settings (like oscillation timeouts and rotation 

recovery) enhanced path reliability. 

The results demonstrate that the system successfully 

navigated autonomously, consistently reaching target goals 

within the environment. The move_base node executed 

planned paths efficiently while adapting to real-time 

conditions. AMCL with 500 particles and a 0.1 resampling 

threshold provided precise localization, and recovery 

behaviors, including clearing costmaps every 15 seconds and 

rotation recovery after 10 seconds of oscillation, improved 

navigation reliability, particularly in dynamic obstacle 

scenarios. 

Fig. 17. Wheelchair generating a path toward the target goal 

 

 
Fig. 18. Wheelchair successfully reaching the goal position and 

orientation. 

Costmaps with a resolution of 0.05 m/cell and a 5 Hz update 

rate effectively mapped obstacles and free spaces. The global 

planner, using the A* algorithm, calculated efficient routes, 

while the local planner, based on the Dynamic Window 

Approach (DWA), dynamically adjusted paths. Planner 

frequencies were set at 10 Hz, and goal tolerances of 0.1 m 

and 5° ensured accurate goal-reaching. 

Figures 17 and 18 show the wheelchair's localization and 

path planning process, as well as the successful achievement 

of the goal position and orientation. The first image 

illustrates the system's localization within the pre-built map 

using the AMCL algorithm. The global and local planners 

are activated to plan the path to the goal. The second one 

demonstrates that the wheelchair successfully reached the 

goal, confirming accurate position and orientation. 

The system's navigation performance was evaluated in both 

static and dynamic environments, achieving a 95% success 

rate in static settings and a robust 85% in dynamic scenarios 

with moving obstacles. RTAB-Map enhanced efficiency by 

reducing the average time to reach goals from 15 seconds 

(Gmapping) to 10 seconds, while also optimizing resource 

utilization, lowering CPU usage from 80% to 60%.

https://doi.org/10.20428/jst.v30i2.2435
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TABLE 2 - KEY CHALLENGES AND CORRECTIVE ACTIONS

 

D. Challenges and Corrective Actions 

During the development and testing of the autonomous 

wheelchair, several challenges arose, ranging from hardware 

limitations to software integration issues. This subsection 

summarizes the major challenges encountered and the 

corresponding corrective actions taken to address them. 

The next table summarizes key challenges and solutions in 

our autonomous wheelchair project. Issues like inaccurate 

mapping, poor localization, unstable navigation, and 

hardware communication were resolved by switching 

algorithms, fine-tuning parameters, optimizing code, and 

improving hardware setup. Adjustments were also made for 

better voice recognition and overheating control. 

VII. CONCLUSION 

This work solves the critical need for low-cost and 

autonomous mobility solutions for people with severe 

disabilities by providing an affordable wheelchair system 

based on ROS.  In fact, using Gmapping SLAM have shown 

major challenges with sensor synchronization and mapping 

accuracy; these are, therefore, counterproductive to good 

navigation. As a result, we implemented a hybrid approach 

that employs RTAB-Map for mapping and AMCL for 

localization has significantly improved the precision of the 

map, localization accuracy, and reliable indoor navigation. 

Integration with the mapping system, adaptive path planning, 

and user-friendly controls in one system is promising for 

enhancing accessibility in diverse real-world scenarios. 

  

 

 The hybrid RTAB-Map and AMCL approach has 

practical implications for users, enabling reliable and 

seamless navigation in dynamic indoor environments. Its 

affordability, achieved through the use of cost-effective 

sensors like Kinect, makes it accessible to underserved 

populations, especially in low-resource settings. 

Additionally, the system’s scalability and adaptability allow 

it to meet various environmental and user-specific 

requirements, addressing mobility challenges outlined in the 

Problem Statement. 

Finally, this prototype can be enhanced by replacing the 

laptop with a Raspberry Pi and a slim screen. This will make 

the overall weight of the system less, improving its 

portability and making it more convenient to use. Usability 

of the system may be improved with richer GUI options and 

offline voice recognition. The further development of the 

outdoor navigation capabilities of the system and the 

refinement of the control algorithms in various environments 

will further expand the applicability of the wheelchair, 

enabling it to be more versatile and adaptive in real 

situations. 
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Challenge DESCRIPTION Corrective Action 

Mapping Accuracy  
Gmapping algorithm produced inaccurate maps 

due to sensor synchronization issues. 

Switched to RGB-D SLAM (rtabmap) for better 

synchronization and improved map detail. 

Localization in Sparse 

Environments 

Localization failed in environments with minimal 

detectable features like plain walls. 

Integrated AMCL for robust particle filter-based 

localization in such environments. 

Path Planning & 

Obstacle Avoidance 

The robot exhibited unstable navigation with 

default move_base parameters. 

Fine-tuned parameters like costmap settings, tolerances, 

and recovery behaviors. 

Hardware Integration & 

Data Synchronization 

Inconsistent data transmission between Arduino 

and ROS led to communication lags. 

Optimized Arduino code and used rosserial to ensure 

efficient data flow. 

Camera Base Position 

for Accurate Mapping 

A poorly placed camera missed low obstacles 

during mapping, leading to inaccurate maps. 

Designed a stable steel base to position the camera at an 

optimal height of 22 cm above ground. 

MPU 6050 Orientation 

Data Issues 

Non-normalized quaternion values from the MPU 

caused issues in ROS odometry calculations. 

Modified the MPU library to send Euler angles instead, 

allowing ROS to compute and normalize the quaternion. 

Qt Library Limitation 

for Voice Recognition 

Qt GUI lacked support for voice recognition, 

impacting accessibility. 

Transitioned to Tkinter, which supports integration with 

the SpeechRecognition library. 

https://journals.ust.edu/index.php/JST
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