
52

https://journals.ust.edu/index.php/JST

Rim Ali Salah Al-Ardhi (1,*)

Dr. Mohammed Fadhl Abdullah
(2)

Enhancing Parallel Implementation of RSA

Algorithm using OpenMP

 ــ ـ
1 Faculty of Engineering, Aden University, Aden, Yemen.
2 Faculty of Eng.& Computing, UST University, Aden, Yemen. Email: m.albadwi@ust.edu
* Corresponding Author Designation, Email: reemalardi@ust.edu

Received: 20/3/2024

Revised: 14/4/2024

Accepted: 17/11/2024

Rim Ali Salah Al-Ardhi Dr. Mohammed Fadhl Abdullah

Volume 29, Issue (2), 2024

© 2024 University of Science and Technology, Aden, Yemen. This article can

 be distributed under the terms of the Creative Commons Attribution

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

 2024 ©

https://journals.ust.edu/index.php/JST
mailto:m.albadwi@ust.edu
mailto:
mailto:reemalardi@ust.edu

53

https://doi.org/10.20428/jst.v29i2.2331

Rim Ali Salah Al-Ardhi Dr. Mohammed Fadhl Abdullah

Volume 29, Issue (2), 2024

Enhancing Parallel Implementation of RSA Algorithm using

OpenMP

Rim Ali Salah Al-Ardhi

Faculty of Engineering, Aden University

Aden, Yemen

reemalardi@ust.edu

Mohammed Fadhl Abdullah

Faculty of Eng.& Computing, UST University

Aden, Yemen

m.albadwi@ust.edu

Abstract—The Rivest-Shamir-Adleman (RSA) method is

commonly used to ensure secure data transmission.

However, RSA's encryption and decoding methods need

significant processing resources, which can strain

computing capacity. To address this issue, we offer a

parallel implementation of the RSA algorithm based on

OpenMP, a popular shared-memory parallelism API. A

series of trials show that our parallel implementation

outperforms its sequential equivalent in terms of

execution times. Our investigation focuses primarily on

the achieved speedup on a multi-core CPU, with an

examination of how thread count affects the performance

of our parallel solution. This study demonstrates the

power of parallel computing in optimizing the RSA

method for speedier data transmission.

Keyword ___ RSA algorithm, OpenMP, parallel

implementation, multi-core processor, Speedup.

I. INTRODUCTION

Encrypting and decrypting data at high speeds is crucial in

various applications that utilize cryptographic techniques. The

goal of cryptographic algorithms is to securely transmit data

through open communication channels while preserving

confidentiality, integrity, and availability (the CIA triad) of

information resources [1].

Symmetric encryption and asymmetric encryption are two

fundamental cryptographic techniques used to secure data and

communications. They differ in terms of the keys used and the

operations performed during encryption and decryption. The

RSA algorithm is a classic example of asymmetric encryption,

ensuring private communication even over insecure channels

[7].

To address the need for faster RSA implementations, our

study explores parallelization of the RSA algorithm in a high-

performance computing environment. The paper is organized

as follows: Section 2 offers a comprehensive review of related

work. Section 3 provides an overview of the RSA algorithm.

Section 4 explains The methodology used and our

experimental methods for sequential and parallel

implementations. Discussion of the finding and result is given

in section 5. The final conclusion is given in section 5

followed by the references.

II. RELATED WORK

A parallel implementation of the RSA algorithm was

developed to target the exponentiation operations. By

partitioning the exponentiation operations into individual

processing elements, the encryption and decryption

mathematical operations were computed faster, resulting in

improved program execution time compared to the serial

implementation [1]. However, This study does not address

parallelizing or optimizing the modular operations.

Additionally, the underlying protocol of the RSA algorithm for

key sharing is not considered.

Singh [2] presented an OpenMP-based implementation of the

RSA algorithm. The study discussed the traditional RSA

cryptosystem and identified that the large size of the text and

the modular power function act as bottlenecks for

performance. A multi-core architecture was used for the

parallel implementation of RSA. The paper compared the

execution of RSA in CPU-only mode and in OpenMP mode

with different byte sizes (10-byte, 100-byte, 200-byte, 300-

byte, 400-byte, and 500-byte). The results showed that higher

degrees of parallelism resulted in better performance. The

comparison revealed an overhead between sequential and

parallel execution.

Patil [3] focused on the development of parallel algorithms to

speed up the processes of encryption, decryption, and digital

signing in the RSA algorithm. The goal was to reduce both the

time and energy involved in these processes.

III. RSA ALGORITHM

The RSA algorithm, developed in 1977 by Rivest, Shamir, and

Adleman, is widely used for data authentication and

encryption in secure transmission over open networks. It is

employed in various online applications, including e-

commerce, credit card processing, key exchanges, and digital

signatures [6]. RSA relies on modular exponentiations and is

https://doi.org/10.20428/jst.v30i2.2331
mailto:reemalardi@ust.edu
mailto:m.albadwi@ust.edu

54

https://doi.org/10.20428/jst.v29i2.2331

Rim Ali Salah Al-Ardhi Dr. Mohammed Fadhl Abdullah

Volume 29, Issue (2), 2024

slower compared to symmetric-key algorithms. To speed up

RSA cryptology process especially for large files size, various

solutions have been proposed, including parallel computing.

The RSA algorithm involves the following steps:

 Select two large prime numbers, p and q.

 Calculate the modulus, n, by multiplying p and q:

n = p * q.

 Calculate Euler's totient function, phi (φ), as φ = (p - 1) *

(q - 1).

 Choose an encryption exponent, e, such that 1 < e < φ and

gcd(e, φ) = 1 (e and φ are coprime).

 Calculate the decryption exponent, d, which is the modular

multiplicative inverse of e modulo φ, such that (d * e) mod

φ = 1.

 The public key consists of the modulus, n, and the

encryption exponent, e.

 The private key consists of the modulus, n, and the

decryption exponent, d.

Encryption: Convert the plaintext message into a numeric

representation. Apply modular exponentiation to the numeric

representation using the recipient's public key (n, e) to obtain

the ciphertext. E (M) = Me mod n, where M is the plain text

Decryption: Apply modular exponentiation to the ciphertext

using the recipient's private key (n, d) to obtain the original

plaintext. Cd mod n , where C is the cipher text

IV. METHODOLOGY

A. RSA parallelization

The chosen tool for parallelization is OpenMP, which is a

portable API for creating shared memory parallel programs.

OpenMP provides a user-friendly and efficient approach to

utilize multiple cores in a multicore computer. It offers

compiler directives and library routines that allow

programmers to write code capable of using all available

cores.

Here are the steps for parallel RSA encryption and decryption:

(i) Creating a Parallel Region using the #pragma directive

provided by OpenMP, (ii) Loop Parallelization: The #pragma

omp for directive is used to specify the loop iterations that

should be executed in parallel, (iii) Divide the message and

the ciphertext into multiple chunks or segments: Depending

on the number of available threads for parallel processing, we

work on evaluating the message in parallel, (iv) Schedule

clause is used to evenly distribute the loop iterations among

the threads, and (v) Merge the encrypted/ decrypted chunks

from all threads to obtain the final encrypted/ decrypted

message.

B. Performance Evaluation: Evaluation of RSA algorithm

performance, in its serial (SRSA) and parallel (PRSA) forms,

is implemented using OpenMP API

C. Speedup Analysis: The speedup analysis focuses on

comparing the execution time of the serial RSA (SRSA) and

parallel RSA (PRSA) implementations. This analysis provides

insights into the efficiency gained through parallelization.

 Speed Up: 𝑺 =
𝑇𝑠

𝑇𝑃

where Ts is the execution time of the sequence RSA

implementation and Tp is the execution time of the parallel

RSA implementation.

D. Efficiency Analysis: This subsection analyzes the

efficiency of the parallelized RSA algorithm. It provides

insights into the effectiveness of parallelization and resource

utilization.

Efficiency: E = 𝑆
𝑝

 where S is the speedup obtained and P is the number

of threads utilized.

V. EXPERIMENT RESULT AND PERFORMANCE

EVALUATION

A. Encryption and Decryption Time Evaluation:

In this section, we present experimental data acquired from

encrypted messages saved in an external file as string-based

plaintext input. And specific computations are performed

using our recognized approach. We effectively parallelize the

implementation of the RSA algorithm across the encryption

and decryption processes by using the OpenMP library. To

assess performance, we will run tests that include both

successful encryption and decryption of the input. These

executions will occur on a single physical CPU machine or

node with varying thread counts (2, 4, 6, 8).

Table 1 shows the encryption time for parallel RSA and

demonstrate the improvement in execution time as the

number of threads increases from 2 to 6 but there is draw back

when it is 8 threads.

Table 1: Encryption Time for Parallel

No. of Threads Parallel Encryption Time

2 0.001087

4 0.001003

6 0.000989

8 0.00126

https://doi.org/10.20428/jst.v30i2.2331

55

https://doi.org/10.20428/jst.v29i2.2331

Rim Ali Salah Al-Ardhi Dr. Mohammed Fadhl Abdullah

Volume 29, Issue (2), 2024

Table 2 shows the decryption time for parallel RSA and

demonstrate the improvement in execution time as the number

of threads increases from 2 to 6 but there is draw back when it

is 8.

Table 2: Decryption Time

No. of Threads Parallel Decryption Time

2 0.000611

4 0.000599

6 0.000445

8 0.00053

Fig.1 Encryption/Decryption Execution time for parallel

 in seconds with variant Threads No

B. Speedup and Efficiency Evaluation:

To demonstrate our experimental findings, we measure the

speedup and efficiency during variant thread numbers, to

present our findings Table 3 is provided, illustrating the

runtime (in seconds), speedup, and efficiency for each thread

count in encryption process.

Table 3: Driven Speedup and Efficiency in encryption process

No. of

Threads

Total

Serial

Time

Encryption

Parallel Time
Speedup Efficiency

2 0.014469 0.001087 13.31095 6.655474

4 0.014469 0.001003 14.42572 3.606431

6 0.014469 0.000989 14.62993 2.438322

8 0.014469 0.00126 11.48333 1.435417

Fig.2 Speedup and Efficiency in seconds in Encryption

Process with variant Threads No

Table 4 is provided, illustrating the runtime (in seconds),

speedup, and efficiency for each thread count in

decryption process.

Table 4: Driven Speedup and Efficiency in Decryption

process

Fig.3 Speedup and Efficiency in Decryption process with

variant Threads No

Importantly, the variability in input strings does not affect

the speedup and efficiency of our developed tool. The only

aspect that varies is the execution time.

 According to our testing, the execution time of the

encryption process improved as the number of threads

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

2 4 6 8

Parallel Excution Time

Parallel Encryption Time

Parallel Decryption Time

0

5

10

15

20

2 4 6 8

Encryption Parallel Process

Encryption Speedup Encryption Efficiency

0

2

4

6

8

2 4 6 8

Decryption Parallel Process

Decryption Speedup Decryption Efficiency

No. of

Threads

Serial

Time

Decryption

Parallel Time
Speedup Efficiency

2 0.005282 0.000611 8.644845 4.322422

4 0.005282 0.000599 8.81803 2.204508

6 0.005282 0.000445 11.86966 1.978277

8 0.005282 0.00053 9.966038 1.245755

https://doi.org/10.20428/jst.v30i2.2331

56

https://doi.org/10.20428/jst.v29i2.2331

Rim Ali Salah Al-Ardhi Dr. Mohammed Fadhl Abdullah

Volume 29, Issue (2), 2024

increased, but we discovered that at thread 8, performance

start to declined due to the balancing load overhead. We too

noticed something similar throughout the decryption

procedure. In speedup and efficiency calculations, the

values we get raise a big question about why the

decryptions process does not achieve the same progress we

did when we went through threads 2 to 6, and some

questions are raised about whether there is a bottleneck we

caused in the steps performed and library header folders we

used during the implementation of parallel RSA algorithm.

VI. CONCLUSION

In this study we effectively parallelized the implementation

of the RSA algorithm across the encryption and decryption

processes using the OpenMP library. To assess

performance, we run tests that include both encryption and

decryption of the input on a single physical CPU machine

with varying thread counts of 2, 4, 6, and 8 threads.

A series of trials show that our parallel implementation

outperforms its sequential equivalent in terms of execution

times. Our investigation was focused primarily on the

achieved speedup on a multi-core CPU, with an

examination of how thread count affects the performance

of parallel solution.

This study demonstrated the power of parallel computing

in optimizing the RSA method for speedier data

transmission. We have found that our modified RSA

algorithms give us an acceptable result in the decryption

and encrypting process considering that we picked a

sequence value of the Thread from 2 to 8, but we noted

some issues cause this progress fall down in thread number

8 due to the balancing overheads of the parallel

computations.

VII. REFERENCES

[1] Md. A. Ayub, Z. A. Onik, and S. Smith, "Parallelized

RSA Algorithm: An Analysis with Performance Evalu-

ation using OpenMP Library in High Performance

Computing Environment," in 2019 22nd International

Conference of Computer and Information Technology

(ICCIT), 18-20 Dec. 2019.

[2] N. Singh, "Parallel Implementation of RSA Algorithm

using OpenMP and Analysis of Speedup," Conference

Paper, Aug. 2022. DOI: 10.5958/2231-

3915.2020.00015.2.

[3] N. M. Patil, A. S. Bingeri, A. Sajian, and M. Khazi,

"Parallelization of RSA Algorithm Using OpenMP,"

JETIR, vol. 7, no. 7, July 2020.

[4] D. Hu, "Using RSA and AES for file encryption,"

CodeProject, 2014. [Online]. Available:

https://www.codeproject.com/Tips/834977/Using-

RSA-and-AES-for-File-Encryption. (Accessed: Apr.

27, 2019).

[5] H. M. Fadhil and M. I. Younis, "Parallelizing RSA al-

gorithm on multicore CPU and GPU," International

Journal of Computer Applications, vol. 87, no. 6, 2014.

[6] A. Mathur, S. Sharma, and S. Khatri, "Parallel Imple-

mentation of Cryptographic algorithm for Image En-

cryption," vol. 4, no. 2, pp. 424-426, 2016.

[7] S. Dhang, R. Das, and P. Chaudhury, "ACAFP: Asym-

metric Key based Cryptographic Algorithm using Four

Prime Numbers to Secure Message Communication,"

in IEEE, pp. 332-337, 2017.

[8] V. Vidhani and R. Kadam, "Performance Analysis of

RSA Algorithm with CUDA Parallel Computing," IR-

JET, vol. 6, no. 5, pp. 6304-6307, May 2019.

[9] S. J. A. O. Djungu, "Parallel approximation of RSA en-

cryption," IJCSI International Journal of Computer

Science Issues, vol. 17, no. 2, Mar. 2020.

[10] D. I. George Amalarethinam and H. M. Leena, "En-

hanced RSA Algorithm with varying Key Sizes for

Data Security in Cloud," in 2016 World Congress on

Computing and Communication Technologies.

https://doi.org/10.20428/jst.v30i2.2331

