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Abstract 

      In this paper, we introduce new binary operations on graphs. In fact, we obtained 

some other product operations, called them classic product operations from union of 

two or more new product operations. We examined the relationship between new 

binary product operations and classic product operations.  
Keywords: Graph,Complete graph, Complement graph, Graph operations. 

1. Introduction 

       A graph G  consists of a non-empty set of elements called vertices and a list of 

unordered pairs of these elements called edges. The vertex and the edge sets of a 

graph G  are denoted by ( )V G  and ( )E G , respectively. Throughout this paper, we 

consider finite graphs that have no loops or multiple edges. The degree of the vertex 

( )v  is the number of edges joined with this vertex is denoted by ( )v . The notion 

| |V  and | |E  are used to indicate the number of vertices and edges respectively [2]. 

      Let G  be simple graph with p  vertices. The complement graph cG  of G  is 

defined to be the simple graph with the same vertex set as G  and where two vertices 

u  and v  are adjacent precisely when they are not adjacent in G . Roughly speaking 

then, the complement of G  can be obtained from the complete graph pK  by 

"rubbing out" all the edges of G  [1]. 

A product binary operation, creates  a new graph from two initial graphs, 

some binary operations called them Elementary Binary Operations, They create a new 

graph from two initial graphs by change of vertices or edges or both such as union or 

join, some other binary operations called them   product binary operations,They also 

create a new graph from two initial graphs, where the resulting graph has the same set 

of vertices but its set of edges depends of the considered operation, such as tensor 

product, cartesian product, strong product, composition, symmetric difference and 

disjunction [5]. 
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1.1 Definition:  If 1G  and 2G  be two simple connected graphs, then  

(a)The vertices setsare defined as follows [3]: 

1 2 1 2( ) = ( ) ( )V G G V G V G , where { , , , , , }       

(b)The edges sets are defined as follows [3]:  

1 2 1 2(1) ( ) ={( , )( , ) :[ ( ), ( )]}E G G a b c d ac E G bd E G    

1 2 1(2) ( ) ={( , )( , ) :[ ( ), = ]E G G a b c d ac E G b d   or  

2[ ( ), = ]}bd E G a c  

1 2 1 2(3) ( ) ={( , )( , ) :[ ( ), = ] [ ( ), = ]E G G a b c d ac E G b d or bd E G a c  

1 2[ ( ), ( )]}or ac E G bd E G   

1 2 1 2(4) ( ) ={( , )( , ) :[ ( )] [ ( ), = ]}E G G a b c d ac E G or bd E G a c   

1 2 1 2(5) ( ) ={( , )( , ) :[ ( )] [ ( )]}E G G a b c d ac E G or bd E G    but not both  

1 2 1 2(6) ( ) ={( , )( , ) :[ ( )] [ ( )]}E G G a b c d ac E G or bd E G    

For convenience, we will call the cartesian product 1 2G G , strong product 1 2G G , 

composition 1 2G G , symmetric difference 1 2G G  and disjunction 1 2G G  

classic product operations.  

1.2 Lemma:  Consider two graphs 1G  and 2G  where  

1 1 2 2 1 1| ( ) |= ,| ( ) |= ,| ( ) |=V G p V G p E G q  and 2 2| ( ) |=E G q  

(a)The number of vertices sets are equals [4]:  

1 2 1 2| ( ) |=V G G p p , where { , , , , , }       

(b)The number of edges sets are equals [4]:  

1 2 1 2(1) | ( ) |= 2E G G q q  

1 2 1 2 2 1(2) | ( ) |=E G G q p q p   

1 2 1 2 2 1 1 2(3) | ( ) |= 2E G G q p q p q q    

2

1 2 1 2 2 1(4) | ( ) |=E G G q p q p  

2 2

1 2 1 2 2 1 1 2(5) | ( ) |= 4E G G q p q p q q    

2 2

1 2 1 2 2 1 1 2(6) | ( ) |= 2E G G q p q p q q    

In this paper, we symbolize with some new product operations on graphs, denoted 

i , where {1,2,...,7}i  , and defined as follows:  

1.3 Definition: If 1G  and 2G  be two simple connected graphs, then  

(a) The vertices sets are defined as follows:  

1 2 2 1 1 2( ) = ( ) = ( ) ( )i iV G G V G G V G V G    

 (b) The edges sets are defined as follows:  
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1 1 2 1(1) ( ) ={( , )( , ) :[ ( ), = ]}E G G a b c d ac E G b d   

1 2 2 1 2(2) ( ) ={( , )( , ) :[ ( ), ( )]}cE G G a b c d ac E G bd E G    

1 3 2 2(3) ( ) = ( , )( , ) :[ = , ( )]E G G a b c d a c bd E G   

1 4 2 2(4) ( ) ={( , )( , ) :[ = , ( )]}cE G G a b c d a c bd E G   

1 5 2 1 2(5) ( ) ={( , )( , ) :[ ( ), ( )]}cE G G a b c d ac E G bd E G    

1 6 2 1(6) ( ) ={( , )( , ) :[ ( ), = ]}cE G G a b c d ac E G b d   

1 7 2 1 2(7) ( ) ={( , )( , ) :[ ( ), ( )]}c cE G G a b c d ac E G bd E G    

    Along this line we fund that the tensor product operation play a prominent role in 

the sequel. For convenience we consider this operation is a new product operation and 

we will denote this operator by 0  rather  . Any other unexplained terminology is 

standard as in [5-10]. 

2. Properties for a new product operations 
        In this section we will compute the properties for a new product operations  

2.1 Lemma: Consider two graphs 1G  and 2G   where; 1 1| ( ) |=V G p , 

2 2| ( ) |=V G p  The number of vertex sets are equals:  

1 2 1 2| ( ) |= : =1,2,...,7iV G G p p i  

Proof:  By definition 1.3  we have  

1 2 1 2( ) = ( ) ( )iV G G V G V G   

 then it’s easy to see that  

1 2 1 2 1 2| ( ) |=| ( ) | | ( ) |= .iV G G V G V G p p   

2.2 Lemma: Consider two graphs 1G  and 2G   where; 1 1| ( ) |=V G p , 

2 2 1 1| ( ) |= ,| ( ) |=V G p E G q  and 2 2| ( ) |=E G q  The number of edge sets are equals:  

1 1 2 1 2(1) | ( ) |=E G G q p  

2

1 2 2 1 2 2 1 2 1 1 2(2) | ( ) |= 2 = 2cE G G q q p q p q q q    

1 3 2 2 1(3) | ( ) |=E G G q p  

2

1 4 2 2 1 1 2 1 2 1 2

1
(4) | ( ) |= = ( 2 )

2

cE G G q p p p p p p q    

2

1 5 2 1 2 1 2 1 2 1 2(5) | ( ) |= 2 = 2cE G G q q p q p q q q    

2

1 6 2 1 2 2 1 1 2 2 1

1
(6) | ( ) |= = ( 2 )

2

cE G G q p p p p p p q    

1 7 2 1 2 1 1 1 2 2 2

1
(7) | ( ) |= 2 = [ ( 1) 2 ][ ( 1) 2 ]

2

c cE G G q q p p q p p q      
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Proof: We have 
1 1

1
=c

pG G K  where 
1

pK be complete graph with 1p vertices, then  

 1
1 1 2

1
| ( ) |=| ( ) |= ( )

pc

pE G G E K  

It follows that  

 1
1 1 2| ( ) | | ( ) |= ( )

pcE G E G  

that is  

 1
1 1 2= ( )

pcq q  

Therefore  

 
2= ( ) : 1,2
pc i

i iq q i   

  

1. We have        1 1 2 1 1 2 2 1 2 1 1 2| ( ) |={( , )( , ) : ( ),( = )}E G G u v u v u u E v v   

For a fixed vertex v  in 2( )V G , there exists an edge between 1( , )u v  and 2( , )u v ,  

where 1 2,u u  are adjacent in 1G . Theref ore, 1 1 2 1 2 1 2| ( ) |=| ( ) | | ( ) |= .E G G E G V G q p   

2. We have           1 2 2 1 1 2 2 1 2 1 1 2 2| ( ) |={( , )( , ) : ( ),( )}cE G G u v u v u u E v v E    

Note that  1 2 2 1 0 2| ( ) |=| ( ) |cE G G E G G   

So  
1 2 2 1 2| ( ) |= 2 | ( ) | | ( ) |cE G G E G E G   

It follows that   
1 2 2 1 2 2 2 1 2 2 2

1
| ( ) |= 2[ ][ ( 1) ] = [ ][ ( 1) 2 ],

2
E G G q p p q q p p q      

that is  
2

1 2 2 2 1 2 1 1 2| ( ) |= 2 .E G G p q p q q q    

3. We have  1 3 2 1 1 2 2 1 2 1 2 2| ( ) |={( , )( , ) : ( = ),( )}E G G u v u v u u v v E   

By writing  1 3 2 2 1 1| ( ) |=| ( ) |,E G G E G G   

we find that  1 3 2 2 1| ( ) |= .E G G q p  

4. We have  1 4 2 1 1 2 2 1 2 1 2 2| ( ) |={( , )( , ) : ( = ),( )}cE G G u v u v u u v v E   

We can write 1 4 2 2 1 1 2 1| ( ) |=| ( ) |=| ( ) | | ( ) |c cE G G E G G E G V G    

It follows that  2

1 4 2 1 2 1 2 1 2

1
| ( ) |= ( 2 ).

2
E G G p p p p p q    

5. We have  1 5 2 1 1 2 2 1 2 1 1 2 2| ( ) |={( , )( , ) : ( ),( )}.cE G G u v u v u u E v v E    

As  1 5 2 1 2| ( ) |= 2 | ( ) | | ( ) |cE G G E G E G   

then  
2

1 5 2 1 2 1 2 1 2| ( ) |= 2E G G p q p q q q    

6. We have 1 6 2 1 1 2 2 1 2 1 1 2| ( ) |={( , )( , ) : ( ), ( = )}cE G G u v u v u u E v v   

We can write 1 6 2 1 1 2 1 2| ( ) |=| ( ) |=| ( ) | | ( ) |c cE G G E G G E G V G    

It follows that  2

1 6 2 2 1 1 2 2 1

1
| ( ) |= ( 2 )

2
E G G p p p p p q    
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7. We have  1 7 2 1 1 2 2 1 2 1 1 2 2| ( ) |={( , )( , ) : ( ), ( )}c cE G G u v u v u u E v v E    

We can write  
1 7 2 1 0 2 1 2| ( ) |=| ( ) |= 2 | ( ) | | ( ) |c c c cE G G E G G E G E G    

It follows that  
1 7 2 1 1 1 2 2 2

1
| ( ) |= [ ( 1) 2 ][ ( 1) 2 ].

2
E G G p p q p p q      

2.3 Lemma:  If 1G  and 2G  be two graphs  where; 1 1| ( ) |=V G p , 

2 2 1 1| ( ) |= ,| ( ) |=V G p E G q  and 2 2| ( ) |=E G q , then 

1 1 2 1
(1) ( , ) =G G Gu v u 

 

1 2 2 1 2

(2) ( , ) =G G G cG
u v u v    

1 3 2 2
(3) ( , ) =G G Gu v v   

1 4 2 2

(4) ( , ) =G G cG
u v v   

1 5 2 21

(5) ( , ) =G G c GG
u v u v    

1 6 2 1

(6) ( , ) =G G cG
u v u   

1 7 2 1 2

(7) ( , ) =G G c cG G
u v u v    

Proof:  (1) We have 
1 1 2 1 2

1 1 2
( , ) ( )

1 1 2

( , ) = 2 | ( ) |= 2G G

u v V G G

u v E G G q p 

 

  

Therefore  
1 1 2 1

( , ) ( ) ( ) ( )
1 2 1 2

( , ) = 1G G G

u v V G G u V G v V G

u v u 

   

    

We can write  
1 1 2 1

( , ) ( ) ( , ) ( )
1 2 1 2

( , ) =G G G

u v V G G u v V G G

u v u 

   

   

It follows that  
1 1 2 1

( , ) =G G Gu v u   

(2) We have  
1 2 2 1 2

1 2 2
( , ) ( )

1 2 2

( , ) = 2 | ( ) |= 4 c

G G

u v V G G

u v E G G q q 

 

  

Therefore  
1 2 2 1 2( , ) ( ) ( ) ( )

1 2 1 2

( , ) =G G G cG
u v V G G u V G v V G

u v u v  

   

    

We can write 
1 2 2 1 2( , ) ( ) ( , ) ( )

1 2 1 2

( , ) =G G G cG
u v V G G u v V G G

u v u v  

   

   

It follows that  
1 2 2 1 2

( , ) =G G G cG
u v u v    
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(3) We have  
1 3 2 2 1

1 3 2
( , ) ( )

1 3 2

( , ) = 2 | ( ) |= 2G G

u v V G G

u v E G G q p 

 

  

Therefore  
1 3 2 2

( , ) ( ) ( ) ( )
1 2 1 2

( , ) = 1G G G

u v V G G u V G v V G

u v v 

   

    

We can write  
1 3 2 2

( , ) ( ) ( , ) ( )
1 2 1 2

( , ) =G G G

u v V G G u v V G G

u v v 

   

   

It follows that  
1 3 2 2

( , ) =G G Gu v v 
 

(4) We have  
1 4 2 2 1

1 4 2
( , ) ( )

1 4 2

( , ) = 2 | ( ) |= 2 c

G G

u v V G G

u v E G G q p 

 

  

Therefore  
1 4 2 2( , ) ( ) ( ) ( )

1 2 1 2

( , ) = 1G G cG
u v V G G u V G v V G

u v v 

   

    

We can write  
1 4 2 2( , ) ( ) ( , ) ( )

1 2 1 2

( , ) =G G cG
u v V G G u v V G G

u v v 

   

   

It follows that  
1 4 2 2

( , ) =G G cG
u v v   

(5) We have 1 5 2 1 2
1 5 2

( , ) ( )
1 5 2

( , ) = 2 | ( ) |= 2(2 )c

G G

u v V G G

u v E G G q q 

 

  

Therefore  
1 5 2 21( , ) ( ) ( ) ( )

1 2 1 2

( , ) =G G c GG
u v V G G u V G v V G

u v u v  

   

    

We can write  
1 5 2 21( , ) ( ) ( , ) ( )

1 2 1 2

( , ) =G G c GG
u v V G G u v V G G

u v u v  

   

   

It follows that  
1 2 5 21

( , ) =G G c GG
u v u v    

(6) We have  
1 6 2 1 2

1 6 2
( , ) ( )

1 6 2

( , ) = 2 | ( ) |= 2 c

G G

u v V G G

u v E G G q p 

 

  

Therefore  
1 6 2 1( , ) ( ) ( ) ( )

1 2 1 2

( , ) = 1G G cG
u v V G G u V G v V G

u v u 

   

    

We can write  
1 6 2 1( , ) ( ) ( , ) ( )

1 2 1 2

( , ) =G G cG
u v V G G u v V G G

u v u 

   

   

It follows that  
1 6 2 1

( , ) =G G cG
u v u   
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(7) We have  
1 7 2 1 2

1 7 2
( , ) ( )

1 7 2

( , ) = 2 | ( ) |= 2(2 )c c

G G

u v V G G

u v E G G q q 

 

  

Therefore  
1 7 2 1 2( , ) ( ) ( ) ( )

1 2 1 2

( , ) =G G c cG G
u v V G G u V G v V G

u v u v  

   

    

We can write  
1 7 2 1 2( , ) ( ) ( , ) ( )

1 2 1 2

( , ) =G G c cG G
u v V G G u v V G G

u v u v  

   

   

It follows that  
1 2 7 1 2

( , ) = .G G c cG G
u v u v    

2.4 Corollary:   If 1G  and 2G  be two graphs, then we can see easy  

 1.  All new product operations are noncommutative, except zero product 

operation 1 0 2G G  and seventh product operation 1 7 2.G G  

 2.  All new product operations are associative, except second product 

operation 1 2 2G G  and fifth product operation 1 5 2.G G  

2.5 Example:   If 1G  and 2G  be two graphs follows in figure 1, 

Then the graphs of a new product operations follows in figure 2. 

 

 
Figure (1): Two Graphs (G1-G2) 
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Figure (2): New Product Binary Operations 

3. Comparison between new and classic operations 
     In this section, we investigate the comparison between our new product operations 

and classic product operations. 

3.1 Theorem:   If 1G  and 2G  are two simple and connected graphs, then  

 
3

1 2 1 2

=1, 2

( ) =i

i i

G G G G


   

Proof: We have 1 1 2 1 3 2 1 2 1 2( ) ( ) = ( ) =V G G G G V G G V V      

As  1 1 2 1 1 2 2 1 2 1 1 2( ) ={( , )( , ) : , = },E G G u v u v u u E v v   
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 1 3 2 1 1 2 2 1 2 2 1 2( ) ={( , )( , ) : , = }.E G G u v u v v v E u u   

Then 
3

1 2 1 1 2 2 1 2 1 1 2 1 2 2 1 2

=1, 2

( ) = {( , )( , ) : ( , = ) ( , = )}i

i i

E G G u v u v u u E v v or v v E u u


    

It follows that 3

1 2 1 2

=1, 2

( ) = ( )i

i i

E G G E G G


 
 

Hence  3

1 2 1 2

=1, 2

( ) = .i

i i

G G G G


 
 

3.2 Theorem:  If 1G  and 2G  are two simple and connected graphs, then  

 
3

1 2 1 2

=0, 2

( ) =i

i i

G G G G


   

Proof: We have  
 3

1 2 1 2

=0, 2

( ) =i

i i

V G G V V


 
 

As  

 1 0 2 1 1 2 2 1 2 1 1 2 2( ) ={( , )( , ) : , },E G G u v u v u u E v v E    

 1 1 2 1 1 2 2 1 2 1 1 2( ) ={( , )( , ) : , = },E G G u v u v u u E v v   

 1 3 2 1 1 2 2 1 2 2 1 2( ) ={( , )( , ) : , = }.E G G u v u v v v E u u   

Then  
1 2 1 1 2 23

1 2 1 1 2 2 1 2 1 1 2

=0, 2

1 2 2 1 2

,

( ) = ( , )( , ) : , =

, = .

i

i i

u u E v v E

E G G u v u v u u E v v

v v E u u


 


 
 

 

It follows that  
3

1 2 1 2

=0, 2

( ) = ( )i

i i

E G G E G G


   

Hence  

 
3

1 2 1 2

=0, 2

( ) = .i

i i

G G G G


   

3.3 Theorem:  If 1G  and 2G  are two simple and connected graphs, then  

 
3

1 2 1 2

=1

( ) =i

i

G G G G  

Proof:We have  
3

1 2 1 2

=0

( ) =i

i

V G G V V   

As  1 0 2 1 1 2 2 1 2 1 1 2 2( ) ={( , )( , ) : , },E G G u v u v u u E v v E    

 1 1 2 1 1 2 2 1 2 1 1 2( ) ={( , )( , ) : , = },E G G u v u v u u E v v   

 1 2 2 1 1 2 2 1 2 1 1 2 2( ) ={( , )( , ) : , },cE G G u v u v u u E v v E    

 1 3 2 1 1 2 2 1 2 2 1 2( ) ={( , )( , ) : , = }.E G G u v u v v v E u u   
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Then  

1 2 1 1 2 2

3
1 2 1 1 2

1 2 1 1 2 2

=0 1 2 1 1 2 2

1 2 2 1 2

,

, =
( ) = ( , )( , ) :

,

, = .

i c

i

u u E v v E

u u E v v
E G G u v u v

u u E v v E

v v E u u

 



 

 
 

 

It follows that  
3

1 2 1 2

=0

( ) = ( )i

i

E G G E G G  

Hence  
 3

1 2 1 2

=0

( ) = .i

i

G G G G
 

3.4 Theorem:   If 1G  and 2G  are two simple and connected graphs, then  

 
5

1 2 1 2

=1, 4

( ) =i

i i

G G G G


   

Proof:We have  
5

1 2 1 2

=1, 4

( ) =i

i i

V G G V V


   

As                         1 1 2 1 1 2 2 1 2 1 1 2( ) ={( , )( , ) : , = },E G G u v u v u u E v v   

               1 2 2 1 1 2 2 1 2 1 1 2 2( ) ={( , )( , ) : , },cE G G u v u v u u E v v E    

              1 3 2 1 1 2 2 1 2 2 1 2( ) ={( , )( , ) : , = },E G G u v u v v v E u u   

              1 5 2 1 1 2 2 1 2 1 1 2 2( ) ={( , )( , ) : , }.cE G G u v u v u u E v v E    

Then  

1 2 1 1 2

5
1 2 1 1 2 2

1 2 1 1 2 2

=1, 4 1 2 2 1 2

1 2 1 1 2 2

, =

,
( ) = ( , )( , ) :

, =

, .

c

i

i i

c

u u E v v

u u E v v E
E G G u v u v

v v E u u

u u E v v E






 
 


  

 

It follows that  
5

1 2 1 2

=1, 4

( ) = ( )i

i i

E G G E G G


   

Hence  
5

1 2 1 2

=1, 4

( ) = .i

i i

G G G G


   

3.5 Theorem:   If 1G  and 2G  are two simple and connected graphs, then  

 
5

1 2 1 2

=0, 4

( ) =i

i i

G G G G


 
 

Proof:We have  5

1 2 1 2

=0, 4

( ) =i

i i

V G G V V


 
 

As                 1 0 2 1 1 2 2 1 2 1 1 2 2( ) ={( , )( , ) : , },E G G u v u v u u E v v E    

       1 1 2 1 1 2 2 1 2 1 1 2( ) ={( , )( , ) : , = },E G G u v u v u u E v v   

1 2 2 1 1 2 2 1 2 1 1 2 2( ) ={( , )( , ) : , },cE G G u v u v u u E v v E    

1 3 2 1 1 2 2 1 2 2 1 2( ) ={( , )( , ) : , = },E G G u v u v v v E u u   
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1 5 2 1 1 2 2 1 2 1 1 2 2( ) ={( , )( , ) : , }.cE G G u v u v u u E v v E    

Then 

1 2 1 1 2 2

1 2 1 1 25

1 2 1 1 2 2 1 2 1 1 2 2

=0, 4

1 2 2 1 2

1 2 1 1 2 2

,

, =

( ) = ( , )( , ) : ,

, =

, .

c

i

i i

c

u u E v v E

u u E v v

E G G u v u v u u E v v E

v v E u u

u u E v v E



 





  
 


 

 

It follows that  
5

1 2 1 2

=0, 4

( ) = ( )i

i i

E G G E G G


   

Hence  
5

1 2 1 2

=0, 4

( ) = .i

i i

G G G G


   

4. Some Remarks on new product operations 

        In this section, we provide some remarks on new product operations. 

4.1 Remark: Any classic product operation can be deduced from our new product 

operations  

Proof:By definition 1.1 and definition 1.3, we have  
3

1 2 1 2=1, 2
(1) = ( )ii i

G G G G


   

3

1 2 1 2=0, 2
(2) = ( )ii i

G G G G


   

3

1 2 1 2=0
(3) = ( )ii

G G G G  

5

1 2 1 2=1, 4
(4) = ( )ii i

G G G G


   

5

1 2 1 2=0, 4
(5) = ( )ii i

G G G G


   

4.2.Remark: Any operation of new product operations can be generated from 

only zero and first product operations.  

Proof: By Lemma 2.1 and Theorems (3.1-3.5), we get 

1 3 2 2 1 1(1) =G G G G   

1 4 2 2 1 1(2) = cG G G G   

1 5 2 1 0 2(3) = cG G G G   

1 6 2 1 1 2(4) = cG G G G   

1 7 2 1 0 2(5) = c cG G G G   
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4.3 Corollary: Any classicproduct operation can be generated from only zero and 

first product operations.  

Proof:By Remark 4.1 and Remark 4.2, we get  

1 2 1 1 2 2 1 1(1) = ( ) ( )G G G G G G     

1 2 1 0 2 1 1 2 2 1 1(2) = ( ) ( ) ( )G G G G G G G G       

1 2 1 0 2 1 1 2 1 0 2 2 1 1(3) = ( ) ( ) ( ) ( )cG G G G G G G G G G        

1 2 1 1 2 1 0 2 2 1 1 1 0 2(4) = ( ) ( ) ( ) ( )c cG G G G G G G G G G         

1 2 1 0 2 1 1 2 1 0 2 2 1 1 1 0 2(5) = ( ) ( ) ( ) ( ) ( )c cG G G G G G G G G G G G         

4.4 Remark :   For , {0,1,...,7}i j   

1 2 1 2( ) ( ) =i jE G G E G G     where i j  

Proof:To prove that we use truth tables, we assume that  

1 2 1 1 2 1 2 2 1 2( = ),( = = ),( = ),( = = )p u u E q u u s v v E t v v   

 We obtain 
4(2 =16)  possibilities in the truth table, 

Table (1): Truth Table 

 p  q  s  t  

1 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

2 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

3 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

4 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

5 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

6 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

7 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

8 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

9 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

10 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

11 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

12 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

http://dx.doi.org/10.20428/JST.21.1.7


New Product Binary Operations on Graphs 

 
 

 

87 
Journal of Science & Technology 

 

 

 

Vol. (21) No. (1) 2016 

 
DOI: 10.20428/JST.21.1.7 

 

 p  q  s  t  

13 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

14 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

15 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

16 
1 2 1u u E  1 2u u  1 2 2v v E  1 2v v  

We omit eight cases, because of impossible probabilities for instant, the first 

case is cancelled, because there is no edge in simple graphs of the type 

1 2 1 1 2( : = )u u E u u . Similarly we omit the cases two, three, four, five, nine and 

thirteen. For the same result, we omit the eleven case there leads to a trivial graph. 

Consequently, we obtain eight different cases, that we illustrate in table (2). 

 
Table (2): Real Truth  

 p  q  s  t  

1 
1 2 1u u E  1 2u u  

1 2 2v v E  1 2v v  

2 
1 2 1u u E

 1 2u u
 1 2 2v v E

 1 2v v
 

3 
1 2 1u u E

 1 2u u
 1 2 2v v E

 1 2v v
 

4 
1 2 1u u E

 1 2u u
 1 2 2v v E

 1 2v v
 

5 
1 2 1u u E

 1 2u u
 1 2 2v v E

 1 2v v
 

6 
1 2 1u u E

 1 2u u
 1 2 2v v E

 1 2v v
 

7 
1 2 1u u E

 1 2u u
 1 2 2v v E

 1 2v v
 

8 
1 2 1u u E

 1 2u u
 1 2 2v v E

 1 2v v
 

 

 Therefore, the table (3) ensures that the edges sets 1 2( ), {0,1,...,7}iE G G i    

are mutually disjoint pairwise 
Table (3): Edges Sets of New Operations 

1 2iG G   1 2iE G G   1 2iE G G  

1 0 2G G  
1 2 1 1 2 2,u u E v v E   1 22q q  

1 1 2G G  1 2 1 1 2,u u E v v   
2 1p q  
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1 2iG G   1 2iE G G   1 2iE G G  

1 2 2G G  1 2 1 1 2 2, cu u E v v E   1 22 cq q  

1 3 2G G  1 2 1 2 2,u u v v E   
1 2p q  

1 4 2G G  1 2 1 2 2, cu u v v E   1 2

cp q  

1 5 2G G  1 2 1 1 2 2,cu u E v v E   
1 22 cq q  

1 6 2G G  1 2 1 1 2,cu u E v v   2 1

cp q  

1 7 2G G  1 2 1 1 2 2,c cu u E v v E   
1 22 c cq q  

Hence,  for , {0,1,...,7}i j   

1 2 1 2( ) ( ) =i jE G G E G G     where  

4.5 Remark: The new product operations generates exactly 255  different operations.  

Proof:  We have already seen that the classic operations can be generated by our new 

product operations. In fact, we can obtain many other operations by combinations of 

the new product operations (exactly 255), since  

 
8

8 8

=1

= 2 1 = 255r

r

C   

4.6 Remark:The union of the graphs that result from all new product operations 

provide the complete graph 

Proof:Let 1G  and 2G  be two graphs, we have to show that  

 7

1 2
1 2

=0

( ) =i p p

i

G G K
 

where  1 1| ( ) |=V G p  and 
2 2| ( ) |=V G p  

 By Definition 1.3 we have  
7 7

1 2 1 2 1 2

=0 =0

( ( )) = ( ) =i i

i i

V G G G G V V    

From the table (3), we can write  

1 2 1 1 2 2

1 2 1 1 2

1 2 1 1 2 2

7 1 2 2 1 2

1 2 1 1 2 2=0
1 2 2 1 2

1 2 1 1 2 2

1 2 1 1 2

1 2 1 1 2 2

,

, =

,

, =
( ( )) = ( , )( , ) :

, =

,

, =

, .

c

i ci

c

c

c c

u u E v v E

u u E v v

u u E v v E

v v E u u
E G G u v u v

v v E u u

u u E v v E

u u E v v

u u E v v E

 
 


 



 


  



  

 

It follows that  7

1 2
1 2

=0

( ( )) = ( )i p p

i

E G G E K
 

http://dx.doi.org/10.20428/JST.21.1.7


New Product Binary Operations on Graphs 

 
 

 

89 
Journal of Science & Technology 

 

 

 

Vol. (21) No. (1) 2016 

 
DOI: 10.20428/JST.21.1.7 

 

Moreover by Lemma 2.1, we get   7

1 2 1 2 1 2

=0

| ( ( )) |=| | | |= .i

i

V G G V V p p 
 

And by Lemma 2.2, we get  
7 2

1 2 1 2 2 1 2 1 2 1 1 2 1 2=0
| ( ( )) |= 2 2ii
E G G q q p q p q p q q q p q       

2 2 2

1 2 1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1

1 1
( 2 ) 2 ( 2 )

2 2
p p p p p q p q p q q q p p p p p q        

             2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 2 1 1 2 2 1 1 2

1
( ) ( 2 )

2
p p p p p p p p p q p q p q p q q q          

2 2

1 2 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2

1 1
= 2 2

2 2
q q p q p q p q q q p q p p p p p q         

2 2 2 2

1 2 1 2 1 2 1 2 1 2 2 1 1 2

1 1 1
2

2 2 2
p q p q q q p p p p p q p p        

2 2 2 2

1 2 1 2 1 2 2 1 1 2 1 2 2 1 1 2

1 1 1
2 )

2 2 2
p p p p p p p q p q p q p q q q         

2 2 1 2
1 2 1 2 2

1 2

1
= ( ) = ( ) =| ( ) |

2

p p

p pp p p p E K  

Therefore  
7

1 2
1 2

=0

| ( ( )) |=| ( ) | .i p p

i

E G G E K  

Hence  
7

1 2
1 2

=0

( ) = .i p p

i

G G K  
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